Законы распределения случайных процессов

Цель работы

—исследование законов распределения различных случайных процессов нормального шума, гармонического и треугольного сигналов со случайными фазами, суммы случайных взаимно независимых сигна­лов, аддитивной смеси гармонического сигнала и шумо­вой помехи, проверка нормализации распределения при увеличении числа взаимно независимых слагаемых в случайном процессе.

Теоретическая часть

В отличие от детерминированных процессов, течение которых определено однозначно, случайный процесс — это изменение во времени физической величины (тока, напряжения и др.), значение которой невозможно пред­сказать заранее с вероятностью, равной единице.

Статистические свойства случайного процесса X{t) можно определить, анализируя совокупность случайных функций времени {Xk(t)}, называемую ансамблем реа­лизаций. Здесь k—номер реализации.

Мгновенные значения случайного процесса в фикси­рованный момент времени являются случайными величинами. Статистические свойства случайного процесса характеризуются законами распределения, аналитиче­скими выражениями которых являются функции распре­деления. Одномерная интегральная функция распределения вероятностей случайного процесса

Здесь P{X(t1)<=x} - вероятность того, что мгновенное Значение случайного процесса в момент времени t1 - примет значение, меньшее или равное x

Одномерная дифференциальная функция распределения случайного процесса или плотность вероятности определяется равенством

Аналогично определяются многомерные функции распределения для моментов времени t1, t2, .tn.

Одномерная плотность вероятности мгновенных значений суммы взаимно независимых случайных процессов Z (t) = Y (t) +Х (t) определяется формулой

где W1x(x), W1y(y), W1z(z) - плотности вероятности процессов X(t), Y(t), Z(t).

Наиболее распространенными функциями случайного процесса (моментами) являются:

среднее значение (первый начальный момент)

дисперсия (второй центральный момент)

Для стационарных случайных процессов выполняется условие

Статистические характеристики стационарных случайных процессов, имеющих эродические свойства, можно найти усреднением не только по ансамблю реализаций, но и по времени одной реализации Xk(t) продолжительностью T:

среднее значение

дисперсия

Перейти на страницу: 1 2 3 4

Дополнительные материалы

Измерение высоты нижней границы облаков
Неблагоприятная экологическая обстановка на территории Российской Федерации требует уделения особого внимания вопросам охраны природы и экологического воспитания. Контроль за воздействием от хозяйственной деятельности человека на окружающу ...

Научные традиции
Наука обычно представляется как сфера почти непрерывного творчества, постоянного стремления к новому. Однако в современной методологии науки четко осознано, что научная деятельность может быть традиционной. Основателем учения о научны ...

Модель портального манипулятора
Данная работа посвящена построению и исследованию динамической модели портального манипулятора, описывающей переходные процессы в манипуляторе с шаговым приводом в момент его позиционирования. При построении были использованы эксперимента ...

Разделы

Электромагнитный импульс как оружие

История вопроса и современное состояние знаний в области эми.

Лабораторные стенды в учебном процессе

Обзор и сравнительный анализ существующих стендов.

Аспекты технического знания

Технический объект и предмет технических наук.

Сварка металлов плавлением

Классификация электрической дуговой сварки.

Распределение примесей в кремнии

Описание процесса зонной плавки и ее математическая модель.



Наука сегодня и вчера - www.anytechnic.ru