Распределение примесей после диффузии.

В математике часто используют как самостоятельную и другую функцию

erfc

z = 1- erf

z (16)

которая называется дополнением функции ошибок до единицы или дополнительной функцией ошибок - error function complement.

Обе функции табулированы.

Таким образом, выражение (14) можно записать

(17)

Величина имеет размерность длины и носит название диффузионной длины или длины диффузии. Физический смысл этого параметра - среднее расстояние, которое преодолели диффундирующие частицы в направлении выравнивания градиента концентрации за время t.

Рассмотренное решение можно использовать как простейшую модель, представляющую распределение примеси в автоэпитаксиальной структуре. При этом, в качестве независимых источников примеси выступает как подложка, так и эпитаксиальный слой. Процессы диффузии с каждой стороны рассматриваются в этом случае как независящие друг от друга, а реальное распределение примесей на границе раздела будет представлять собой сумму отдельных решений.

1.3.2 Распределение примеси при диффузии из постоянного источника в полубесконечное тело.

Диффузант поступает в полубесконечное тело через плоскость x=0 из источника, обеспечивающего постоянную концентрацию примеси No на поверхности раздела твердое тело - источник в течение любого времени. Такой источник называют бесконечным или источником бесконечной мощности. Полагается, что в принимающем диффузант теле нет рассматриваемой примеси.

Начальное распределение концентраций и граничные условия для этого случая задаются в виде

N(x,t) = No для x=0

N(x,0) = 0 для x>0

Решением уравнения (16) для данных условий является выражение

(18)

Если в объеме полупроводникового материала до диффузии имелась примесь противоположного типа по отношению к диффундирующей, эта примесь распределена по объему равномерно и её концентрация равна Nb, то в этом случае в полупроводнике образуется электронно-дырочный переход. Его положение (глубина залегания) xj определяется условием N(x,t)=Nb , откуда

(19)

(20)

здесь запись erfc-1

обозначает аргумент z функции erfc

.

При решении практических задач, связанных с анализом диффузионных процессов необходимо знать количество примеси Q, накопленной в твердом теле при диффузии в течение времени t. Эта величина определяется по формуле

(21)

где J

(0,t) - поток диффузанта в объем через плоскость x=0

(22)

отсюда

(23)

Следует обратить внимание на возрастающее со временем значение накопленной в диффузионном слое примеси при диффузии с данными граничными условиями.

Рассмотренная модель диффузионного процесса с постоянным источником описывает процесс диффузионного легирования полупроводникового материала из газовой или паровой фазы. Этот процесс используется при создании сильно легированных диффузионных слоев (например, эмиттерных) с поверхностными концентрациями No близкими к значениям предельной твердой растворимости примеси в данном полупроводниковом материале.

Перейти на страницу: 1 2 3 4 5

Дополнительные материалы

Волоконный оптический гироскоп
Волоконный оптический гироскоп (ВОГ) - оптико-электронный прибор, создание которого стало возможным лишь с развитием и совершенствованием элементной базы квантовой электроники. Прибор измеряет угловую скорость и углы поворота объекта, на к ...

Эффект Ребиндера в полимерах
Речь пойдет о явлении, очень часто наблюдающемся и хорошо изученном, - о разрушении твердых тел. В самом общем виде его можно представить как распад тела на две или более частей, когда внешняя механическая нагрузка достигает некоего критич ...

Аппаратное обеспечение.
Структурная схема устройства показана на рис.2. Прибор выполнен на базе восьмибитового микропроцессора Z-80. Измерительная процедура всегда начинается с измерения периода. С генератора импульсов на таймер непрерывно поступают счетные импульсы. С п ...

Разделы

Электромагнитный импульс как оружие

История вопроса и современное состояние знаний в области эми.

Лабораторные стенды в учебном процессе

Обзор и сравнительный анализ существующих стендов.

Аспекты технического знания

Технический объект и предмет технических наук.

Сварка металлов плавлением

Классификация электрической дуговой сварки.

Распределение примесей в кремнии

Описание процесса зонной плавки и ее математическая модель.



Наука сегодня и вчера - www.anytechnic.ru