Пример расчета надежности

Структурная схема надежности приведена на рис 7.1. Значения интенсивности отказов элементов даны в 1/ч.

1. В исходной схеме элементы 2 и 3 образуют параллельное соединение. Заменяем их квазиэлементом А. Учитывая, что , получим

. (7.1)

2. Элементы 4 и 5 также образуют параллельное соединение, заменив которое элементом В и учитывая, что , получим

. (7.2)

3. Элементы 6 и 7 в исходной схеме соединены последовательно. Заменяем их элементом С, для которого при

. (7.3)

4. Элементы 8 и 9 образуют параллельное соединение. Заменяем их элементом D, для которого при , получим

. (7.4)

5. Элементы 10 и 11 с параллельным соединением заменяем элементом Е , причем, так как , то

(7.5)

6. Элементы 12 , 13 , 14 и 15 образуют соединение “2 из 4”, которое заменяем элементом F. Так как, то для определения вероятности безотказной работы элемента F можно воспользоваться комбинаторным методом (см. раздел 3.3):

(7.6)

7. Преобразованная схема изображена на рис. 7.2.

8. Элементы A, B, C, D и Е образуют (рис. 7.2) мостиковую систему, которую можно заменить квазиэлементом G. Для расчета вероятности безотказной работы воспользуемся методом разложения относительно особого элемента (см. раздел 3.4), в качестве которого выберем элемент С. Тогда

(7.7)

где - вероятность безотказной работы мостиковой схемы при абсолютно надежном элементе С (рис. 7.3, а), - вероятность безотказной работы мостиковой схемы при отказавшем элементе С (рис. 7.3, б).

Учитывая, что , получим

(7.8)

9. После преобразований схема изображена на рис. 7.4.

10. В преобразованной схеме (рис. 7.4) элементы 1, G и F образуют последовательное соединение. Тогда вероятность безотказной работы всей системы

(7.9)

11. Так как по условию все элементы системы работают в периоде нормальной эксплуатации, то вероятность безотказной работы элементов с 1 по 15 (рис. 7.1) подчиняются экспоненциальному закону:

(7.10)

12. Результаты расчетов вероятностей безотказной работы элементов 1 - 15 исходной схемы по формуле (7.10) для наработки до часов представлены в таблице 7.1.

13. Результаты расчетов вероятностей безотказной работы квазиэле-ментов A, B, C, D, E, F и G по формулам (7.1) - (7.6) и (7.8) также представлены в таблице 7.1.

14. На рис. 7.5 представлен график зависимости вероятности безотказной работы системы P от времени (наработки) t.

15. По графику (рис. 7.5, кривая P) находим для - процентную наработку системы ч.

16. Проверочный расчет при ч показывает (таблица 7.1), что .

Перейти на страницу: 1 2 3 4 5 6

Дополнительные материалы

Первый отечественный физик – продолжатель трудов Максвелла и Герца
П. Н. Лебедев наряду с М. В. Ломоносовым одна из замечательных фигур истории русской физики. Академик С. И. Вавилов, президент АН СССР в 1945 – 1951 гг. Петр Николаевич Лебедев – «…великий русский физик, внесший после смерти Г. ...

Химия и космос
Химия имеет прямое отношение ко многим достижениям человека в освоении космоса. Без усилий многочисленных ученых-химиков, технологов, инженеров-химиков не были бы созданы удивительные конструкционные материалы, которые позволяют космич ...

Принцип Маха и космологическое происхождение инерции
Инерция, пожалуй, одно из самых загадочных явлений макромира. Неизвестно, как она возникает, где ее источники и почему она такая какая есть /1/. Все живое рождается с заранее закодированной в памяти информацией об инерции. Сидя в машине, м ...

Разделы

Электромагнитный импульс как оружие

История вопроса и современное состояние знаний в области эми.

Лабораторные стенды в учебном процессе

Обзор и сравнительный анализ существующих стендов.

Аспекты технического знания

Технический объект и предмет технических наук.

Сварка металлов плавлением

Классификация электрической дуговой сварки.

Распределение примесей в кремнии

Описание процесса зонной плавки и ее математическая модель.



Наука сегодня и вчера - www.anytechnic.ru