Пример расчета надежности

24. Результаты расчетов для системы с увеличенной надежностью элементов 12, 13, 14 и 15 приведены в таблице 7.1. Там же приведены расчетные значения вероятности безотказной работы системы “2 из 4” F` и системы в целом P`. При ч вероятность безотказной работы системы , что соответствует условиям задания. График приведен на рис 7.5.

25. Для второго способа увеличения вероятности безотказной работы системы - структурного резервирования - по тем же соображениям (см. п. 18) также выбираем элемент F, вероятность безотказной работы которого после резервирования должна быть не ниже (см. формулу ( 7.11 )).

26. Для элемента F - системы “2 из 4” - резервирование означает увеличение общего числа элементов. Аналитически определить минимально необходимое количество элементов невозможно, т.к. число элементов должно быть целым и функция дискретна.

27. Для повышения надежности системы “2 из 4” добавляем к ней элементы, идентичные по надежности исходным элементам 12 - 15, до тех пор, пока вероятность безотказной работы квазиэлемента F не достигнет заданного значения.

Для расчета воспользуемся комбинаторным методом (см. раздел 3.3) :

- добавляем элемент 16, получаем систему “2 из 5”:

(7.13)

(7.14)

-

добавляем элемент 17, получаем систему “2 из 6”:

(7.15)

(7.16)

- добавляем элемент 18, получаем систему “2 из 7”:

(7.17)

(7.18)

28. Таким образом, для повышения надежности до требуемого уровня необходимо в исходной схеме (рис. 7.1) систему “2 из 4” достроить элементами 16, 17 и 18 до системы “2 из 7” (рис. 7.7).

29. Результаты расчетов вероятностей безотказной работы системы “2 из 7” F`` и системы в целом P`` представлены в таблице 7.1.

30. Расчеты показывают, что при ч , что соот-ветствует условию задания.

31. На рис. 7.5 нанесены кривые зависимостей вероятности безотказной работы системы после повышения надежности элементов 12 - 15 (кривая ) и после структурного резервирования (кривая ).

Выводы:

1. На рис. 7.5 представлена зависимость вероятности безотказной работы системы (кривая ). Из графика видно, что 50% - наработка исходной системы составляет часов.

2. Для повышения надежности и увеличения 50% - наработки системы в 1.5 раза (до часов) предложены два способа:

а) повышение надежности элементов 12, 13, 14 и 15 и уменьшение их отказов с до ч;

б) нагруженное резервирование основных элементов 12, 13, 14 и 15 идентичными по надежности резервными элементами 16, 17 и 18 (рис. 7.7).

3. Анализ зависимостей вероятности безотказной работы системы от времени (наработки) (рис. 7.5) показывает, что второй способ повышения надежности системы (структурное резервирование) предпочтительнее первого, так как в период наработки до часов вероятность безотказной работы системы при структурном резервировании (кривая ) выше, чем при увеличе-нии надежности элементов (кривая ).

Перейти на страницу: 1 2 3 4 5 6 7

Дополнительные материалы

Верификация физической нереализуемости гравитационных сингулярностей
Рассмотрено совместное решение уравнений ОТО и термодинамики для идеальной жидкости, обладающей топологией полого тела. Найдены пространственные распределения основных термодинамических и гравитермодинамических её параметров и характеристи ...

Случаи выздоровления - не случайны!
Еше древние философы поняли, что по частице мира можно сделать некоторые верные заключения о его недоступной части. Так и глубокий ум, помещенный в камеру с зеркалом, изучая только себя, способен догадаться о многом. Рак считается наст ...

Оптическая обработка информации
Современная практика и научные исследования требуют измерений высоких и сверхвысоких напряжений — до 10 МВ и больших токов — до 1¸2 МА. Напряжения и токи при этом могут быть постоянными, переменными, и импульсными с длительностью им ...

Разделы

Электромагнитный импульс как оружие

История вопроса и современное состояние знаний в области эми.

Лабораторные стенды в учебном процессе

Обзор и сравнительный анализ существующих стендов.

Аспекты технического знания

Технический объект и предмет технических наук.

Сварка металлов плавлением

Классификация электрической дуговой сварки.

Распределение примесей в кремнии

Описание процесса зонной плавки и ее математическая модель.



Наука сегодня и вчера - www.anytechnic.ru