Нейроподобная сеть.

Нейроподобная сеть представляет собой совокупность нейроподобных элементов, определенным образом соединенных друг с другом и с внешней средой. Входной вектор (координирующий входное воздействие или образ внешней среды) подается на сеть путем активации входных нейроподобных элементов. Множество выходных сигналов нейронов сети y1, y2, .,yN называют вектором выходной активности, или паттерном активности нейронной сети. Веса связей нейронов сети удобно представлять в виде матрицы W, где wij - вес связи между i- и j-м нейронами. В процессе функционирования (эволюции состояния) сети осуществляется преобразование входного вектора в выходной, т.е. некоторая переработка информации, которую можно интерпретировать, например, как функцию гетеро- или автоассоциативной памяти. Конкретный вид выполняемого сетью преобразования информации обусловливается не только характеристиками нейроподобных элементов, но и особенностями ее архитектуры, т.е. той или иной топологией межнейронных связей, выбором определенных подмножеств нейроподобных элементов для ввода и вывода информации или отсутствием конкуренции, направлением и способами управления и синхронизации информационных потоков между нейронами и т.д.

Модели нейронных сетей.

Рассматриваемые нами модели нейронных сетей объединены в три группы. В п. рассматриваются сети персептронного типа, для которых характерно отсутствие обратных связей между нейроподобными элементами, организованными в слои. Отличительной особенностью сетей, представленных в п. 2.1.2, являются симметричные (равные по величине и противоположные по направлению) связи между любыми двумя соединенными нейронами. В нейросетевых архитектурах, описанных в п. 2.1.3, между нейронами одного слоя имеются постоянные тормозящие связи (латеральное торможение).

.

Сети с прямыми связями.

Прямой персептрон.

В середине 50-х годов была предложена одна из первых моделей нейронных сетей, которая вызвала большой интерес из-за своей способности обучаться распознаванию простых образов. Эта модель - персептрон - состоит из бинарных нейроподобных элементов и имеет простую топологию, что позволило достаточно полно проанализировать ее работу и создать многочисленные физические реализации. Типичный персептрон состоит из трех основных компонент:

1. матрицы бинарных входов r1, r2, ., rn (сенсорных нейронов или “сетчатки”, куда подаются входные образы);

2. набора бинарных нейроподобных элементов x1, x2, ., xm (или предикатов в наиболее общем случае) с фиксированными связями к подмножествам сетчатки (“детекторы признаков”);

3. бинарного нейроподобного элемента с модифицируемыми связями к этим предикатам (“решающий элемент”).

На самом деле число решающих элементов выбирают равным количеству классов, на которое необходимо разбить предъявляемые персептрону образы.

Таким образом, модель персептрона характеризуется наличием только прямых связей, один из слоев которых является модифицируемым. В постейшем случае, когда n = m и xi = ri, детекторы признаков могут рассматриваться как входной слой. Тогда персептрон становится одним бинарным нейроподобным элементом. Это классическая модель М-входового нейрона, приведенная на рис. 1.1, или простой персептрон Розенблатта. В общем случае каждый элемент xi может рассматриваться как булева функция, зависящая от некоторого подмножества сетчатки. Тогда величина выходных сигналов этих обрабатывающих элементов является значением функции xi, которое равно 0 или 1.

Устройство реагирует на входной вектор генерацией выходного сигнала y решающего элемента по формуле (1.3). Таким образом, персептрон формирует гиперплоскость, которая делит многомерное пространство x1, x2, ., xm на две части и определяет, в какой из них находится входной образ, выполняя таким образом, его классификацию. Возникает вопрос, как определить значения весов, чтобы обеспечить решение персептроном конкретной задачи. Это достигается в процессе обучения.

Один из алгоритмов обучения приведен в параграфе 2.2.

Перейти на страницу: 1 2 3 4

Дополнительные материалы

Об истории изобретения и распространения бумаги
«Бумага — продукт перетирания лохмотьев и тряпок, коль скоро сделана и отдана под печатный станок, превратившись в книгу или газету, приобретает беспримерное могущество, становится всемирным владыкой. Она изменяет наши идеи и нашу рел ...

Физическая сущность парадокса близнецов
Показано, что мнимый парадокс близнецов имеет место в СТО из-за взаимного неразличения стандартного времени (путиподобного собственного времени движущегося объекта) и координатоподобного собственного времени инерциальной системы отсчета (И ...

Кодирование речи
Необходимость кодирования речевой информации возникла не так давно, но на сегодняшний момент, в связи с бурным развитием техники связи, особенно мобильной связи, решение этой проблемы имеет большое значение при разработке систем связи. ...

Разделы

Электромагнитный импульс как оружие

История вопроса и современное состояние знаний в области эми.

Лабораторные стенды в учебном процессе

Обзор и сравнительный анализ существующих стендов.

Аспекты технического знания

Технический объект и предмет технических наук.

Сварка металлов плавлением

Классификация электрической дуговой сварки.

Распределение примесей в кремнии

Описание процесса зонной плавки и ее математическая модель.



Наука сегодня и вчера - www.anytechnic.ru