Спонтанная магнитострикция и ее вклад в магнитную анизотропию

При возможных изменениях ориентации самопроизвольной намагниченности в кристалле изменяются равновесные расстояния между узлами решетки. Поэтому возникают самопроизвольные магнитострикционные деформации. т.е.

Опр.

При перемагничивании ферромагнетика имеет место магнитное взаимодействие элекектронов, которое влияет на межатомное расстояние, вызывая деформацию кристаллической решетки, что сопровождается изменением линейных размеров тела и появлением соответствующей магнитоупругой энергии. Это явление называется магнитострикцией.

В частном случае кубического кристалла в отсутствие внешних напряжений свободная энергия магнитного и упругого взаимодействия (с точностью до шестых степеней в направляющих косинусах вектора Is и вторых степеней тензора магнитострикционных напряжений), равна сумме энергии магнитокристаллической анизотропии f

a, упругой энергии f

упр

и магнитоупругой энергии f

му:

f

a(ai ,ei j)= f

a(ai ,ei j)+ f

упр.(ai ,ei j)+ f

му. (ai ,ei j) (1)

1) Можно феноменологическим путем получить выражение плотности f

a энергии магнитной анизотропии, раскладывая эту энергию в ряд по степеням направляющих косинусов вектора намагниченности ai относительно осей симметрии кристалла. Сначала найдем выражение f

a для кобальта, имеющего гексагональную решетку с ОЛН - с, для которого ai =a = cos (I

s,с) = cos J. Для гексагональной решетки, обладающей центром симметрии, операция замены a на - a должна оставлять энергию инвариантной относительно такого преобразования симметрии. Следовательно, в разложении останутся только члены с четными степенями а, т. е.

fa

=

K

1

¢

a

2

+

K

2

¢

a

4

+ (2)

где K

1

¢

a

2

и K

2

¢

a

4

и т. д. - параметры магнитной анизотропии; fa чаще записывают в следующем виде:

fa

= K1

sin2J+ K2

sin4J+ ., (3)

где K

1

и K

2

называют 1-й и 2-й константами магнитной анизотропии. Энергия анизотропии кристаллов гексагональной системы в общем случае должна зависеть от азимута j. Но эта зависимость является очень слабой, и ею обычно пренебрегают. Для кубических кристаллов, таких как Fe, Ni, энергия анизотропии выражается в функции направляющих косинусов (a1, a2, a3) намагниченности I

s относительно трех ребер куба:

(a1=cos(Is

, [100]); a2=cos(Is

, [010]); a3=соs(Is

, [001]). (4)

Энергия анизотропии должна быть такой функцией a1 , a2 , a3, которая оставалась бы инвариантной при преобразованиях симметрии кубического кристалла.

В кубическом кристалле плоскости типа [100] являются плоскостями симметрии. Зеркальное отражение вектора Is

в такой плоскости должно оставлять функцию f

Перейти на страницу: 1 2 3 4

Дополнительные материалы

Физическая сущность парадокса близнецов
Показано, что мнимый парадокс близнецов имеет место в СТО из-за взаимного неразличения стандартного времени (путиподобного собственного времени движущегося объекта) и координатоподобного собственного времени инерциальной системы отсчета (И ...

Биологические ритмы здоровья
Все живые существа на Земле - от растений до высших млекопитающих - подчиняются суточным ритмам. У человека в зависимости от времени суток циклически меняются физиологическое состояние, интеллектуальные возможности и даже настроение. Учены ...

Российский опыт ранней подготовки кадров для науки подходы, формы, результаты
В настоящее время широко обсуждается вопрос привлечения молодежи в науку и закрепления в ней молодых кадров, разрабатываются концепции, предлагаются различные виды государственных мер. Но вопрос этот является только частью более общей проб ...

Разделы

Электромагнитный импульс как оружие

История вопроса и современное состояние знаний в области эми.

Лабораторные стенды в учебном процессе

Обзор и сравнительный анализ существующих стендов.

Аспекты технического знания

Технический объект и предмет технических наук.

Сварка металлов плавлением

Классификация электрической дуговой сварки.

Распределение примесей в кремнии

Описание процесса зонной плавки и ее математическая модель.



Наука сегодня и вчера - www.anytechnic.ru