Анатомия термодинамики

Первый пример: рассмотрение процесса сжатия в осевом компрессоре. Из результатов анализа физического процесса в процессе сжатия в компрессоре выведена новая формула для определения технической работы компрессора. Согласно этой новой формуле техническая работа компрессора, в идеальном цикле, больше разности энтальпий в конце и в начале процесса сжатия. Результат этот является следствием того, что атмосферное давление не может выполнить работу сжатия, равную произведению атмосферного давления на разность объёмов в начале и в конце процесса сжатия. Причина этого в том, что атмосфера выполняет работу сжатия в компрессоре совместно с компрессором, и тот берёт на себя часть работы атмосферы.

Второй пример: рассмотрение процесса расширения газа в турбине. В результате чего выведена новая формула для определения величины работы турбины. Согласно этой новой формуле работа турбины меньше разности энтальпий начала и конца процесса расширения, в идеальном цикле. Причина этого в том, что в турбине может быть реализовано расширение газа только в направлении движения потока газа. Расширение газа в направлении перпендикулярном потоку происходит без выполнения работы.

Полученные новые формулой технической работы компрессора и турбины также указывают на то, что энтальпия не является функцией состояния

Третий пример: рассмотрение современной методики определения энтальпии газа, в непрерывном процессе истечения газа. Где, нагреваемый газ, выполняет работу расширения в изобарическом процессе, затрачиваемую на сжатие охлаждаемого газа, впереди по потоку. В этом случае, работа расширения газа будет меньше произведения давления на разность удельных объёмов газа, в конце и начале процесса расширения. Так как, так как уменьшение объёма охлаждаемого газа будет происходить не только вследствие расширения нагреваемого газа, но также вследствие охлаждения потока газа.

Такой метод определения энтальпии является методически не верным и даёт заниженное значение энтальпии. В этом примере, как и в предыдущих двух, речь идёт об идеальном процессе истечения, без трения и без завихрений в потоке.

Рассмотренные ошибки второй группы весьма существенные, величина их составляет более 10 процентов от измеряемой величины.

Согласование столь неточной термодинамической теории с практикой достигается за счёт введения поправочных коэффициентов. В общепринятых расчётных формулах термодинамических циклов в роли этих поправочных коэффициентов выступают: КПД компрессора и внутренний относительный КПД турбины. Физическая сущность этих поправочных коэффициентов ошибочно объясняется только необратимыми потерями. Таким образом, все ошибки теории списываются на необратимость. Необратимые потери от трения в реальном цикле, конечно, есть, но они на порядок меньше чем принято считать. В основном, эти коэффициенты скрывают ошибки теории.

Выводы

В термодинамике допущено немало ошибок. От некоторых известных законов и формул термодинамики, таких как: «Закон Джоуля для идеального газа»; формула КПД цикла Карно; формула Майера; формула определения технической работы компрессора, формула работы турбины, – необходимо отказаться. Следует также признать, что энтропия и энтальпия не являются функциями состояния.

Но отказ от этих известных закономерностей не означает краха термодинамической теории. Оставшихся законов и взаимосвязей, дополненных новыми формулами технической работы компрессора и работы турбины, вполне достаточно для решения любых практических задач, при условии выполнения следующих мероприятий:

экспериментального, не зависимого от метода Майера, уточнения величины механического эквивалента теплоты;

уточнения методики экспериментов по определению теплоёмкости газов при постоянном давлении;

выработки новой методики расчёта табличных значений: теплоёмкостей, внутренней энергии, энтальпии, – учитывающей зависимость внутренней энергии от объёма и зависимость теплоёмкости Ср от давления;

расширения экспериментальной базы данных (увеличение количества реперных точек) для более точного определения калорических параметров газов (Ср, Сv, U, H);

Выполнение указанных мероприятий и применение предложенных формул, позволит повысить точность расчётов термодинамических циклов тепловых машин. В особенности, это касается новых (пионерских) разработок изделий, предназначенных для эксплуатации в ещё не освоенном диапазоне температур и давлений. Позволит, в частности, более правильно рассчитывать КПД воздушно-реактивных двигателей и дальность полёта летальных аппаратов, проектируемых для эксплуатации в ещё не освоенном диапазоне высот и скоростей.

Знакомство с полным вариантом статьи позволит почувствовать сопричастность в распутывании противоречий и ошибок корифеев термодинамики, а может быть и моих собственных ошибок. В любом случае, знакомство с этой, почти детективной, историей доставит удовольствие всем читателям, которые привыкли составлять собственное мнение по интересующему их вопросу, не оглядываясь на авторитеты. Надеюсь, что технические приложения, разобранные в статье, в скором времени найдут применение на практике.

Перейти на страницу: 1 2 3 4

Дополнительные материалы

Случаи выздоровления - не случайны!
Еше древние философы поняли, что по частице мира можно сделать некоторые верные заключения о его недоступной части. Так и глубокий ум, помещенный в камеру с зеркалом, изучая только себя, способен догадаться о многом. Рак считается наст ...

Принцип работы и методика измерения.
Прибор имеет два входа, на которые подаются сигналы от датчиков. На один вход поступает сигнал датчика количества оборотов коленчатого вала, который представляет собой импульс с амплитудой равной 5В. Этот импульс вырабатывается в тот момент, когда ...

Напряженность поля радиотелецентров
Для решения вопросов проектирования и эксплуатации радиотелепередающих цетров и других радиотехнических систем необходимо рассчитывать напряженности поля радиоволн УКВ диапазона. На основе этизх расчетов устанавливаются санитарно-защитные ...

Разделы

Электромагнитный импульс как оружие

История вопроса и современное состояние знаний в области эми.

Лабораторные стенды в учебном процессе

Обзор и сравнительный анализ существующих стендов.

Аспекты технического знания

Технический объект и предмет технических наук.

Сварка металлов плавлением

Классификация электрической дуговой сварки.

Распределение примесей в кремнии

Описание процесса зонной плавки и ее математическая модель.



Наука сегодня и вчера - www.anytechnic.ru