Интерпретация квантовомеханических представлений с позиций волнового описания системности физических величин

В общем случае числовой коэффициент n имеет не единственное, а множество значений, определяющих амплитуды различных гармоник Ψ- функции. Эти значения устанавливаются решением дифференциального уравнения с учетом начальных условий.

Заметим, что отношение квадрата постоянной Планка к удвоенному значению массы, представляющее по размерности произведение энергии на площадь, присутствует в правой части уравнения (2.1) вполне логично. Системные соотношения этой ФВ рассмотрены в разделе 4. В атомной физике эта величина характеризует изоэнергетическую поверхность, называемую поверхностью Ферми.

Однако использование временного уравнения Шредингера в форме выражения (2.1) не всегда может быть оправданным. Дело в том, что постоянная Планка сама представляет собой соотношение энергии с частотой (а также произведение импульса на длину волны), поэтому ее использование в формулах одновременно с указанными величинами ведет, как правило, к сильному затуманиванию в этих формулах физической сути явлений.

Если разделить обе части уравнения (2.1) на , то ситуация становится несколько яснее. Временное уравнение Шредингера принимает вид:

. (2.7)

Отношение потенциальной энергии U к постоянной Планка есть частота, а отношение постоянной Планка к массе, является физической величиной, называемой кинематической вязкостью (в термодинамике это коэффициент диффузии). Вот такие физические параметры, скорее всего, и определяют изменение пси-функции во времени.

Используя выражение (2.7) возможно осуществить простейший переход к волновому описанию стационарного состояния, что достигается приравниванием этого выражения нулю (поскольку изменения во времени принимаются отсутствующими). Сменив обозначение пси-функции на стационарное и сгруппировав одноименные величины, из (2.7) можно получить:

(2.8)

В сравнении с выражением (2.3), называемым уравнением Шредингера для стационарных состояний, здесь отсутствует (не учтена) только кинетическая энергия Е.

Если вышерассмотренным способом анализировать с самого начала выражение (2.3), то оно легко выводится из следующих логических соображений. Синусоидальная y - функция будет равна своей собственной второй пространственной производной с обратным знаком (без учета амплитудных различий), если ее умножить на квадрат отношения импульса к действию актуальному.

В действительности мы это и наблюдаем, если выражение (2.3) переписать несколько иначе:

. (2.9)

Подкоренное выражение в этой формуле представляет собой квадрат импульса, а общий коэффициент при втором члене слева (при ψ) представляет собой квадрат волнового вектора k, так что в итоге мы приходим к выводу о том, что уравнение Шредингера для стационарных состояний это обычное волновое уравнение гармонических стационарных колебаний:

. (2.10)

Если взять не вторую, как в выражении (2.10), а первую пространственную производную пси-функции, представленной в общем виде, и построить дифференциальное уравнение на сравнении этой производной с самой Ψ- функцией, то мы получим уравнение с известным в квантовой физике оператором проекции импульса (формула 3.61 учебника [1]):

. (2.11)

Из этого уравнения определяются возможные значения px. Запись последнего выражения становится более понятной с использование в уравнении волнового вектора

. (2.12)

Решением уравнения (2.12) является гармоническая функция вида

. (2.13)

Считается, что собственные значения оператора проекции импульса px образуют непрерывный спектр значений от - до + . Однако, при ограничении пси-функции по координате спектр значений волнового вектора обязательно становится дискретным. Причем получаемые дискретные значения будут целочисленно кратны основному значению, определяемому максимально возможной длиной волны (вернее ).

Исходя из представленных и ряда иных соображений, можно предположить, что используемые в квантовой механике так называемые операторы ФВ, по сути, есть искусственные образования. Они представляют собой комбинации ограниченного числа ФВ (действия актуального, энергии и импульса) с операторами дифференцирования, изымаемыми (совместно с указанными ФВ) из начальных дифференциальных уравнений, описывающих волновое представление микрочастиц.

Перейти на страницу: 1 2 3 4 5 6 7 8 9

Дополнительные материалы

Атомная энергия и человек
Современную цивилизацию отличают от всех предшествующих эпох два основных качества: обилие потребляемой энергии и совершенная система коммуникаций. Именно они составляют основу всех достижений технологии и техники нашего времени. Их символ ...

От технологии к технософии. Прогресс между верой и разочарованием
Идея прогресса, как действенного фактора общественного развития возникла в ХУП в., одновременно со становлением идеологии индустриальной цивилизации, подготовкой промышленной революции. Утверждению ее в таком статусе предшествовал феномен ...

Трех- и четырехволновое рассеяние света на поляритонах в кристаллах ниобата лития с примесями
Задачей данной работы является исследование рассеяния света на равновесных и возбуждаемых поляритонных состояниях в кристаллах. К таким типам рассеяния относятся спонтанное параметрическое рассеяние (СПР) и некоторые разновидности че ...

Разделы

Электромагнитный импульс как оружие

История вопроса и современное состояние знаний в области эми.

Лабораторные стенды в учебном процессе

Обзор и сравнительный анализ существующих стендов.

Аспекты технического знания

Технический объект и предмет технических наук.

Сварка металлов плавлением

Классификация электрической дуговой сварки.

Распределение примесей в кремнии

Описание процесса зонной плавки и ее математическая модель.



Наука сегодня и вчера - www.anytechnic.ru