Единицы измерения в радиационной физике

Для оценки радиационной опасности, которой подвергается человек вблизи источников ионизирующих излучений, существует большой набор дозиметрических приборов. Каждый из них служит для измерения вполне определенной физической величины, а измерить какую-либо величину – это значит установить, сколько раз в ней содержится некоторая элементарная порция, называемая единицей физической величины. Выбор такой единицы, вообще говоря, произволен, и он закрепляется соответствующим международным соглашением. Какие же единицы выбраны для измерения свойств ионизирующих излучений?

Основная физическая величина, которая характеризует радиоактивный источник, это число происходящих в нем распадов в единицу времени. Такая величина была названа активностью. Активность того или иного вещества, например, радиоактивного изотопа, определяется количеством атомов, распадающихся в единицу времени (скажем, за одну секунду), и, следовательно, число испускаемых веществом радиоактивных частиц прямо пропорционально его активности.

В качестве единицы активности и Международной системе единиц СИ выбран беккерель (Бк, Bq). Активность в 1 Бк соответствует одному распаду в секунду. Однако в практической дозиметрии и радиационной физике чаще используется другая единица – кюри (обозначается Ки, Ci). Кюри в 37 миллиардов раз больше одного беккереля (1 Ки = 3,7 1010 Бк), то есть соответствует 37 миллиардам радиоактивных распадов в секунду. С чем связан такой, казалось бы, странный и произвольный выбор единицы? Дело в том, что именно такое число распадов происходит в одном грамме радия-226 – исторически первого вещества, в котором были изучены законы радиоактивного распада. Поскольку активность одного грамма чистого радия близка к 1 Ки, то ее часто выражают в граммах. В этом (и только в этом) случае единица массы вещества обладает единичной активностью.

Благодаря распаду количество радиоактивных атомов в первоначальной массе вещества уменьшается с течением времени. Соответственно снижается, и активность. Это уменьшение активности подчиняется экспоненциальному закону:

Ct = C0 exp (– [0,693/T]t)

который называется законом радиоактивного распада. Здесь Ct – активность вещества по прошествии времени t, С0 – активность в начальный момент. Как видно из формулы, описывающей распад, величина T служит важнейшей характеристикой радиоактивности – она показывает то время, по истечении которого активность вещества (или число радиоактивных атомов) уменьшается вдвое. Это время T называется периодом полураспада.

У разных радиоактивных веществ период полураспада меняется в очень широких пределах: от миллионных долей секунды до нескольких миллиардов лет. Например, период полураспада урана-238 равен 4,5 миллиарда лет, радиоактивного изотопа йода-131 – около 8 дней, цезия-137 – тридцать лет. При авариях с ядерными установками последние два изотопа способны доставить наибольшие неприятности. Оба представляют собой летучие продукты деления, поэтому они легко могут попасть в атмосферу и образовать аэрозоли. Однако если йода-131 через несколько месяцев останется ничтожно мало – он практически весь распадется, – то цезий-137 вместе с другими выпавшими долгоживущими изотопами еще сохраняет способность заражать местность. Во что же превращается радиоактивный йод в результате распада? В инертный газ ксенон-131, который вполне устойчив. За 100 дней содержание йода-131 и соответственно его активность уменьшатся в 212 = 4096 раз.

Под действием излучений, испускаемых радиоактивными изотопами, в облучаемом объекте накапливаются различные нарушения. Принято считать (хотя это сегодня все чаще подвергается сомнению), что изменения, происходящие в облучаемом веществе, полностью определяются поглощенной энергией радиоактивного излучения. Это положение, строго говоря, не доказано, и его можно назвать энергетическим постулатом. Во всяком случае, поглощенная энергия излучения служит самой удобной физической величиной, характеризующей действие радиации на организмы.

И вот на VII Международном конгрессе радиологов, который состоялся в 1953 году в Копенгагене, в период наиболее острого интереса к атомной науке и технике, энергию любого вида излучения, поглощенную в одном грамме вещества, было рекомендовано называть поглощенной дозой. В качестве единицы поглощенной дозы был выбран рад (rad, по первым буквам английского словосочетания «radiation absorbed dose», – поглощенная доза излучения). Один рад соответствует такой поглощенной дозе, при которой количество энергии, которая выделяется в одном грамме любого вещества, равно 100 эрг независимо от вида и энергии ионизирующего излучения. Таким образом,

Перейти на страницу: 1 2 3 4

Дополнительные материалы

О возможностях физической нереализуемости космологической и гравитационной сингулярностей в общей теории относительности
Обоснована возможность нереализуемости космологической сингулярности Большого Взрыва Вселенной непосредственно в ортодоксальной ОТО. Показано отсутствие ограничения массы астрономического тела, самосжимающегося в СО Вейля, если тело являет ...

Атомная энергия и человек
Современную цивилизацию отличают от всех предшествующих эпох два основных качества: обилие потребляемой энергии и совершенная система коммуникаций. Именно они составляют основу всех достижений технологии и техники нашего времени. Их символ ...

Модель портального манипулятора
Данная работа посвящена построению и исследованию динамической модели портального манипулятора, описывающей переходные процессы в манипуляторе с шаговым приводом в момент его позиционирования. При построении были использованы эксперимента ...

Разделы

Электромагнитный импульс как оружие

История вопроса и современное состояние знаний в области эми.

Лабораторные стенды в учебном процессе

Обзор и сравнительный анализ существующих стендов.

Аспекты технического знания

Технический объект и предмет технических наук.

Сварка металлов плавлением

Классификация электрической дуговой сварки.

Распределение примесей в кремнии

Описание процесса зонной плавки и ее математическая модель.



Наука сегодня и вчера - www.anytechnic.ru