Специальная часть

.

Откуда, приняв что , окончательно получим:

. (13)

Приведем первое уравнение системы (12) к вращающейся системе координат. Для этого из четвертого уравнения системы (12) выразим ток ротора, представленный во вращающейся системе координат: , где Y20 - вектор потокосцепления ротора во вращающейся системе координат. Подставив найденное значение тока ротора в третье уравнение системы (12), получим:

.

Приняв, что - коэффициент электромагнитной связи ротора, - переходная индуктивность ротора, определим значение тока статора во вращающейся системе координат: . Подставляем найденное значение тока статора в первое уравнение системы (12):

.

Откуда, приняв что , окончательно получим:

. (14)

Спроецируем уравнения (13) и (14) на оси d и q вращающейся с частотой поля системы координат, учитывая, что U10 = U10d + j·U10q, Y10 = Y10d + j·Y10q и Y20 = Y20d + j·Y20q:

или преобразовав к нормальной форме Коши:

(15)

Уравнение для вращающего момента обобщенной электрической машины, согласно [1], имеет вид:

,

или перейдя к проекциям на оси d и q:

(16).

Все вышеприведенные рассуждения справедливы для обобщенной двухполюсной машины. В случае реальной многополюснолй машины ее необходимо привести к эквивалентной двухполюсной. С этой целью запишем уравнение движения:

,

где w - угловая скорость реальной машины, M' - вращающий момент реальной машины, Mс - механический вращающий момент нагрузки. Перепишем уравнение движения, учитывая, что M’ = p·M и w = W/p, где p - число пар полюсов реальной многополюсной машины:

. (17)

Объединив (15), (16) и (17), получим систему уравнений асинхронного двигателя во вращающейся с частотой поля системе координат:

(18)

Система уравнений (18) удобна тем, что может быть решена численными методами. Так, задавшись напряжением, статическим моментом и параметрами схемы замещения, можно найти потокосцепления статора и ротора Y10 и Y20, момент М и скорость вращения ротора асинхронной машины w.

3.4 Проектирование робота

3.4.1 Постановка задачи

По заданной кинематической схеме манипулятора и заданному положению выходного звена рассчитать переменные параметры манипулятора, т. е. решить обратную задачу кинематики с использованием матричного метода. Проверку выполнить графическим методом. Размеры звеньев подобрать самостоятельно, шаг изменения размеров 50 мм.

Перейти на страницу: 1 2 3 4 5 6 7 8 9

Дополнительные материалы

Первый отечественный физик – продолжатель трудов Максвелла и Герца
П. Н. Лебедев наряду с М. В. Ломоносовым одна из замечательных фигур истории русской физики. Академик С. И. Вавилов, президент АН СССР в 1945 – 1951 гг. Петр Николаевич Лебедев – «…великий русский физик, внесший после смерти Г. ...

Очерк общей теории старения и где ошибаются современные геронтологи
Выдвинутая гипотеза первичной амортальности многоклеточных организмов постулирует, что у первых возникших на Земле многоклеточных организмов унаследованные от одноклеточных эукариот клеточные механизмы старения и механизм программируемой ...

Некоторые научно-технические проблемы развития электромеханики малой мощности
Научно-технические проблемы, решением которых занимаются сотрудники лаборатории микромашин кафедры электромеханики и технологий электротехнических производств Чувашского государственного университета в сотрудничестве с предприятиями, можно ...

Разделы

Электромагнитный импульс как оружие

История вопроса и современное состояние знаний в области эми.

Лабораторные стенды в учебном процессе

Обзор и сравнительный анализ существующих стендов.

Аспекты технического знания

Технический объект и предмет технических наук.

Сварка металлов плавлением

Классификация электрической дуговой сварки.

Распределение примесей в кремнии

Описание процесса зонной плавки и ее математическая модель.



Наука сегодня и вчера - www.anytechnic.ru