Построение динамической модели переходных процессов манипулятора МРЛ-901П

Решение уравнения (2.22) будет иметь вид:

(2.23)

Определим произвольные постоянные и , решая систему уравнений:

.

(2.24)

Решение системы (2.24) будет иметь вид:

,

(2.25)

если учесть (2.20) то:

(2.26)

подставляя (2.26) в (2.21) и с учетом (2.23) имеем:

(2.27)

где - реальная часть; - мнимая часть.

Тогда разделяя реальную и мнимую части в (2.27) получим:

.

(2.28)

Учитывая что:

,

(2.29)

имеем:

(2.30)

Преобразуя (2.30) получим решение уравнения (2.19):

(2.31)

Прологарифмируем выражение (2.31) предварительно подставив в него значение допустимой погрешности позиционирования:

,

(2.32)

где - допустимая погрешность позиционирования.

Преобразуя (2.32) получим выражение для определения времени переходного процесса:

(2.33)

Для расчета жесткости C и коэффициента демпфирования в модели используются экспериментально полученные зависимости. В частности коэффициент демпфирования определяется по осциллограмме затухания колебаний рабочего органа.

Таким образом, время переходного процесса, для данного типа манипулятора при заданной массе положении рабочего органа определяется по выражению (2.33), в котором коэффициенты жесткости и демпфирования предварительно определены экспериментально.

2.2 Анализ переходных процессов в манипуляторе МРЛ-901П

Источниками возникновения переходных процессов в манипуляторе МРЛ-901П являются: зубчатая ременная передача линейного модуля манипулятора и его свободная консоль.

На этапе зондирующих экспериментов исследовались парные зависимости коэффициента демпфирования от натяжения зубчатого ремня и смещения рабочего органа вдоль консоли. Результаты анализа полученных осциллограмм сведены в таблицы 2.1 и 2.2.

Анализ результатов показывает, что натяжение зубчатого ремня существенным образом влияет на коэффициенты демпфирования модуля линейного перемещения: так при увеличении начального натяжения ремня от минимального значения h = 0,03778 до максимального h = 0,00667 (в исследуемых приделах) коэффициент демпфирования уменьшается в 3 раза. Таким образом, можно сделать вывод о том, что демпфирование линейного модуля с зубчатой ременной передачей может задаваться и варьироваться в широких пределах, как на этапе конструирования, так и в процессе его эксплуатации.

Табл. 2.1

Результаты анализа осциллограмм собственных колебаний рабочего органа манипулятора МРЛ-901П на консоли

Величина смещения рабочего органа вдоль консоли ly, мм

Период колебаний рабочего органа T, с.

Частота колебаний w, с-1

Логарифмический декремент затухания n

Коэффициент демпфирования b, кг/c

Время затухания колебаний tп.п., с.

0

0,057

17,54

0,956

369

0,6

175

0,067

15

0,693

227,55

0,9

350

0,08

12,5

0,446

122,65

1,2

Перейти на страницу: 1 2 3 4 5 6 7 8 9

Дополнительные материалы

Некоторые научно-технические проблемы развития электромеханики малой мощности
Научно-технические проблемы, решением которых занимаются сотрудники лаборатории микромашин кафедры электромеханики и технологий электротехнических производств Чувашского государственного университета в сотрудничестве с предприятиями, можно ...

Аппаратное обеспечение.
Структурная схема устройства показана на рис.2. Прибор выполнен на базе восьмибитового микропроцессора Z-80. Измерительная процедура всегда начинается с измерения периода. С генератора импульсов на таймер непрерывно поступают счетные импульсы. С п ...

Техника и будущее. О новой методологии прогноза развития техники
Зададимся вопросом: можно ли прогнозировать развитие техники? Если да, то какими способами? Мы полагаем, что ответ на первый вопрос должен быть положительным. Однако требуется сделать несколько существенных оговорок ... Кто мешает теб ...

Разделы

Электромагнитный импульс как оружие

История вопроса и современное состояние знаний в области эми.

Лабораторные стенды в учебном процессе

Обзор и сравнительный анализ существующих стендов.

Аспекты технического знания

Технический объект и предмет технических наук.

Сварка металлов плавлением

Классификация электрической дуговой сварки.

Распределение примесей в кремнии

Описание процесса зонной плавки и ее математическая модель.



Наука сегодня и вчера - www.anytechnic.ru