Модель шумов и нестабильностей в ВОГ.

Источником шумов в ВОГ, ухудшающих чувствительность прибора, являются флуктуации излучения оптического источника (лазерного диода, светодиода или суперлюминесцентного диода). Этот шум проявляется в флуктуациях измеряемого выходного сигнала. Излучение источника ВОГ может изменяться как по интенсивности, так и по длине волны генерируемого светового потока.

Шум, связанный с изменением интенсивности излучения, увеличивает общий уровень дробовых шумов; он может быть вызван либо флуктуациями тока смещения, прилагаемого к источнику, либо внутренними флуктуациями в самом источнике. В случае полупроводниковых лазерных источников шум, связанный с изменениями интенсивности, добавляет один или два децибела в общий уровень дробовых шумов. При проектировании ВОГ спектр подобного шума необходимо, конечно, знать; известно, что в случае полупроводниковых лазеров этот спектр весьма сложен.

Следует, однако, заметить, что во многих схемах регистрации, используемых в ВОГ, оптическая фаза преобразуется в интенсивность посредством интерферометрического процесса. На выходе электронного устройства считывают значения оптической интенсивности, эквивалентные фазе. Нестабильность в интенсивности излучения оптического источника (даже, если длина волны излучения остается постоянной) приводит к нестабильностям в значениях фазы.

Гетеродинные системы, а также системы регистрации с обращением фазы в нуль устойчивы по отношению к нестабильностям такого типа. Известно, что у полупроводников источников со временем появляется нестабильность интенсивности излучения, вызванная старением, однако этот эффект может быть скомпенсирован, если измерять полную интенсивность, от задней грани источника и регулировать соответствующим образом ток смещения. Неясно, насколько эффективна эта процедура, так как изменения в токе смещения вызовут соответствующие изменения температуры лазера, а это приведет к соответствующим изменениям в длине волны излучения на выходе, тем самым воздействуя на, масштабный коэффициент.

Как уже отмечалось, стабильность длины волны излучения источника излучения ВОГ непосредственно влияет на масштабный коэффициент прибора. Лазеры с термической стабилизацией могут быть достаточно стабильны, хотя изменения в длине волны излучения в зависимости от старения тока накачки и температуры теплоотвода должны быть включены в спецификацию при их предназначении для ВОГ; это позволит выбрать диоды с подходящими характеристиками.

Следует, однако, заметить, что шумы, связанные с изменением длины волны излучения источника ВОГ, незначительны в большинстве систем регистрации фазы. Они фактически декоррелируют по частоте обратное рэлеевское рассеяние излучения. Например, известны системы ВОГ, где излучение гелий-неонового лазера специально модулируется по частоте с тем, чтобы декоррелировать обратно рассеянное излучение.

Рассмотрим теперь шумы, появляющиеся в ВОГ из-за нелинейного характера взаимодействия излучения со средой, в которой оно распространяется. Несмотря на очень низкие уровни излучения, распространяющегося в ВОГ нелинейные эффекты могут быть весьма значительными, если учесть, конечно, что ВОГ очень чувствителен к фазовым невзаимностям в контуре. Нелинейный электрооптический эффект носит название эффекта Керра и состоит в изменении фазового набега световой волны, распространяющейся в среде, под действием интенсивности излучения (т. е. фаза изменяется в зависимости от квадрата амплитуды излучения). При исследованиях ВОГ было

замечено, что эффект Керра вносит значительный вклад в паразитный дрейф прибора. Рассмотрим для полноты модели шумов и нестабильностей наиболее важные аспекты влияния эффекта Керра на чувствительность ВОГ .

Фазовая постоянная распространения для волны, бегущей по часовой стрелке, пропорциональна сумме интенсивности прямой волны и удвоенной интенсивности обратной волны. То же справедливо для волны, бегущей против часовой стрелки в контуре. Следовательно вклады в нелинейность определяются как волной, распрестраняющейся по часовой стрелке, так и волной, распространяющейся против часовой стрелки. Если интенсивности встречно бегущих волн разные, а это может быть при температурных изменениях светоделителей пучков, ответвителей и т. д., то фазовые постоянные распространения для противоположно бегущих волн изменяются различным образом. Налицо фазовая невзаимность контура ВОГ, приводящая к соответствующему дрейфу прибора.

Перейти на страницу: 1 2 3 4 5

Дополнительные материалы

Оптическая обработка информации
Современная практика и научные исследования требуют измерений высоких и сверхвысоких напряжений — до 10 МВ и больших токов — до 1¸2 МА. Напряжения и токи при этом могут быть постоянными, переменными, и импульсными с длительностью им ...

Измерение угла опережения зажигания
Одним из распространенных методов проверки системы зажигания, в частности угла опережения зажигания, является стробоскопический, при котором импульс высокого напряжения на свече первого цилиндра поджигает стробоскопическую лампу, дающую в ...

Измерение магнитострикции ферромагнетика
Данная работа посвящена изучению поведедения ферромагнетиков в магнитном поле. Хотя магнитное взаимодействие является малой поправкой к электрическим обменным силам, обусловливающим самопроизвольную намагниченность, тем не менее, они ...

Разделы

Электромагнитный импульс как оружие

История вопроса и современное состояние знаний в области эми.

Лабораторные стенды в учебном процессе

Обзор и сравнительный анализ существующих стендов.

Аспекты технического знания

Технический объект и предмет технических наук.

Сварка металлов плавлением

Классификация электрической дуговой сварки.

Распределение примесей в кремнии

Описание процесса зонной плавки и ее математическая модель.



Наука сегодня и вчера - www.anytechnic.ru