Фазовая и групповая скорости

Затем Ландсберг переходит непосредственно к доказательству существования групповая скорости, отличающейся от скорости любой составляюшей этого “волнового пакета”.

На стр. 429 он рассматривает случай сложения ДВУХ волн, при котором, как уже было указано выше, образует биения, не имеющие никакого отношения к передаче импульса (информации). Очевидно, что узлы этих биений НЕ ЯВЛЯЮТСЯ ИМПУЛЬСАМИ, и выделение неких точек на биениях и нахождение “скорости их перемещения” является совершенно не правомерным!

Для определения же истинного характера прохождения модулирующего сигнала в дисперсной среде необходимо рассмотреть случай модуляции монохроматической волны, например, синусоидальным сигналом.

В этом простейшем случае, когда модуляция осуществляется синусоидальным сигналом, мы имеем три волны:

где , , - амплитуды, , , - коэффициенты преломления (дисперсной среды) ни частотах , , . Здесь надо помнить, что практичеси всегда Δω<<ω и глубина модуляции <100%, то есть .

Можно, конечно, вспоминая курс средней школы, сложить три синуса, получив при этом аналитическое выражение для огибающей модулирующего сигнала. Намного же проще и наглядней сложить эти синусоиды графически (см. рис. 2).

Рис. 2

Здесь на первом графике представлен сигнал (синусоидальная несущая волна, модулированная синусоидальным сигналом малой частоты, то есть ) на выходе из передатчика (при Х = 0). На втором и третьем графиках представлено положение волн на расстояниях и от передатчика.

Очевидно, что при х = 0 все три волны совпадают по фазе. Далее они начинают “расходиться”. Это значит, что первая боковая, для которой начинает отставать по фазе от несущей, а вторая боковая, для которой – опережать.

Фазовый сдвиг боковой относительно несущей может быть определен по формуле:

, где – угловая частота несущей, - угловая частота модуляции (), х – расстояние, пройденное сигналом (длина линии), с – скорость света в вакууме, - производная зависимости коэффициента преломления от частоты . При этом считалось, что . Таким образом, происходит “фазовое уширение сигнала” равное (при линейной зависимости ). При дальнейшем уширении импулса он полностью деформируется (распадается) и при фазовом сдвиге, равном 2π, форма сигнала (синусоидального) будет повторена. Если “выделить” центр импульса (чем не характерная точка!), то совершенно очевидно, что скорость распостранения сигнала будет равна ФАЗОВОЙ СКОРОСТИ НЕСУЩЕЙ ВОЛНЫ! Очевидно также, что ПОНЯТИЯ “ГРУППОВОЙ СКОРОСТИ” НЕ СУЩЕСТВУЕТ! Существует только “уширение сигнала”, которое и ограничивает скорость предачи данных и длину линии в дисперсной среде.

Перейти на страницу: 1 2 3 4

Дополнительные материалы

Разработка информационной системы интеллектуального здания на примере музея-усадьбы Н.Е. Жуковского
Работа состоит из четырех разделов. В первом рассматривается концепция и определение интеллектуального здания. Во втором проводится анализ различных систем управления и применяемых протоколов взаимодействия устройств. В третьем разделе при ...

Оптимизация работы силовых трансформаторов
Силовые трансформаторы подразделяют на сухие, устанавливаемые в помещениях с пжаро- и взрывоопасной средой, масляные для наружной и внутренней установки в неопасной с точки зрения пожара и взрыва среде и трансформаторы с заполнением негорю ...

Об истории изобретения и распространения бумаги
«Бумага — продукт перетирания лохмотьев и тряпок, коль скоро сделана и отдана под печатный станок, превратившись в книгу или газету, приобретает беспримерное могущество, становится всемирным владыкой. Она изменяет наши идеи и нашу рел ...

Разделы

Электромагнитный импульс как оружие

История вопроса и современное состояние знаний в области эми.

Лабораторные стенды в учебном процессе

Обзор и сравнительный анализ существующих стендов.

Аспекты технического знания

Технический объект и предмет технических наук.

Сварка металлов плавлением

Классификация электрической дуговой сварки.

Распределение примесей в кремнии

Описание процесса зонной плавки и ее математическая модель.



Наука сегодня и вчера - www.anytechnic.ru