Логические системы в различных функциональных наборах

ФАЛ в СДНФ примет вид:

F1(X,Y,Z,P) = (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú

(X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P)

F3(X,Y,Z,P) = (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú

(X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P)

F5(X,Y,Z,P) = (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú

(X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P)

ФАЛ в СКНФ примет вид:

F1(X,Y,Z,P) = (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P)

F3(X,Y,Z,P) = (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P)

F5(X,Y,Z,P) = (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P)

2.6. Минимизация ФАЛ

Проведем минимизацию полученных ФАЛ при помощи карты Карно и представим их в ДНФ. Для этого попытаемся оптимальным образом объединить 0-кубы в кубы большей размерности. Клетки, образующие k-куб, дают минитерм n-k ранга, где n - число переменных, которые сохраняют одинаковое значение на этом k-кубе. Таким образом, получим ДНФ выбранных ФАЛ.

Рис 2.2а, б, в

Проведем минимизацию алгебраическим путем, воспользовавшись тождеством а È а = а.

XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP =

= XYZ Ú XZP Ú XZP Ú YZP Ú XYZ Ú XZP = ZP Ú XYZ Ú XZP Ú YZP Ú XYZ

XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZPÚ XYZP Ú XYZP Ú XYZP Ú XYZP =

= YZP Ú YZP Ú XZP Ú XYZ Ú XYZ = XY Ú YZP Ú YZP Ú XZP

Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZPÚ XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP = XZP Ú XYP Ú XYZ Ú XZP Ú XZP Ú XYZP

2.7. Представление ФАЛ в виде куба

Исследование ФАЛ.

Матрица отношений.

Построить матрицу отношений T:H ´ A. Матрица отношений представляет собой таблицу, строками которой являются записи (кортежи признаков), а строками отношения, которые имеют все уникальные имена. Матрица отношения представлена в таблице 3.

Матрица отношений. Табл. 3

3.2.

Определим классы толерантности. Рассмотрим классы толерантности k1, k2, k3, имеющие общие элементы, следовательно, являющиеся пересекающимися множествами.

h1 = h(a1) = h(A) = { X0, X1, X3, X5, X6, X7, X9, X12, X13, X14 }

h2 = h(a2) = h(B) = { X1, X2, X8, X9, X10, X11, X12 }

h3 = h(a3) = h(C) = { X0, X3, X5, X6, X7, X9, X10, X13, X14 }

Проанализировав классы h1, h2, h3, можно получить: k1 Ç k2 = 0;

k1 Ç k3 = 0; k2 Ç k3 = 0, т.е. {k1, k2, k3 } - образуют класс толерантности

Результаты исследования занесем в таблицу 3.

Исследование ФАЛ на эквивалентность.

Определим классы эквивалентности для этого множества А = {Х0, Х1, , Х15 } разобьем на классы эквивалентности, получим 6 классов

Перейти на страницу: 1 2 3 4

Дополнительные материалы

Очерк общей теории старения и где ошибаются современные геронтологи
Выдвинутая гипотеза первичной амортальности многоклеточных организмов постулирует, что у первых возникших на Земле многоклеточных организмов унаследованные от одноклеточных эукариот клеточные механизмы старения и механизм программируемой ...

Случаи выздоровления - не случайны!
Еше древние философы поняли, что по частице мира можно сделать некоторые верные заключения о его недоступной части. Так и глубокий ум, помещенный в камеру с зеркалом, изучая только себя, способен догадаться о многом. Рак считается наст ...

В. И. Вернадский — ученый и организатор науки
Если бросить взгляд на историю человеческой мысли, мы увидим, как мучительно трудно давался людям отход от традиционного образа мышления. Стремление придерживаться испытанных временем и предписанных авторитетами взглядов, привычка следоват ...

Разделы

Электромагнитный импульс как оружие

История вопроса и современное состояние знаний в области эми.

Лабораторные стенды в учебном процессе

Обзор и сравнительный анализ существующих стендов.

Аспекты технического знания

Технический объект и предмет технических наук.

Сварка металлов плавлением

Классификация электрической дуговой сварки.

Распределение примесей в кремнии

Описание процесса зонной плавки и ее математическая модель.



Наука сегодня и вчера - www.anytechnic.ru