Логические системы в различных функциональных наборах

ФАЛ в СДНФ примет вид:

F1(X,Y,Z,P) = (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú

(X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P)

F3(X,Y,Z,P) = (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú

(X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P)

F5(X,Y,Z,P) = (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú

(X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P)

ФАЛ в СКНФ примет вид:

F1(X,Y,Z,P) = (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P)

F3(X,Y,Z,P) = (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P)

F5(X,Y,Z,P) = (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P)

2.6. Минимизация ФАЛ

Проведем минимизацию полученных ФАЛ при помощи карты Карно и представим их в ДНФ. Для этого попытаемся оптимальным образом объединить 0-кубы в кубы большей размерности. Клетки, образующие k-куб, дают минитерм n-k ранга, где n - число переменных, которые сохраняют одинаковое значение на этом k-кубе. Таким образом, получим ДНФ выбранных ФАЛ.

Рис 2.2а, б, в

Проведем минимизацию алгебраическим путем, воспользовавшись тождеством а È а = а.

XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP =

= XYZ Ú XZP Ú XZP Ú YZP Ú XYZ Ú XZP = ZP Ú XYZ Ú XZP Ú YZP Ú XYZ

XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZPÚ XYZP Ú XYZP Ú XYZP Ú XYZP =

= YZP Ú YZP Ú XZP Ú XYZ Ú XYZ = XY Ú YZP Ú YZP Ú XZP

Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZPÚ XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP = XZP Ú XYP Ú XYZ Ú XZP Ú XZP Ú XYZP

2.7. Представление ФАЛ в виде куба

Исследование ФАЛ.

Матрица отношений.

Построить матрицу отношений T:H ´ A. Матрица отношений представляет собой таблицу, строками которой являются записи (кортежи признаков), а строками отношения, которые имеют все уникальные имена. Матрица отношения представлена в таблице 3.

Матрица отношений. Табл. 3

3.2.

Определим классы толерантности. Рассмотрим классы толерантности k1, k2, k3, имеющие общие элементы, следовательно, являющиеся пересекающимися множествами.

h1 = h(a1) = h(A) = { X0, X1, X3, X5, X6, X7, X9, X12, X13, X14 }

h2 = h(a2) = h(B) = { X1, X2, X8, X9, X10, X11, X12 }

h3 = h(a3) = h(C) = { X0, X3, X5, X6, X7, X9, X10, X13, X14 }

Проанализировав классы h1, h2, h3, можно получить: k1 Ç k2 = 0;

k1 Ç k3 = 0; k2 Ç k3 = 0, т.е. {k1, k2, k3 } - образуют класс толерантности

Результаты исследования занесем в таблицу 3.

Исследование ФАЛ на эквивалентность.

Определим классы эквивалентности для этого множества А = {Х0, Х1, , Х15 } разобьем на классы эквивалентности, получим 6 классов

Перейти на страницу: 1 2 3 4

Дополнительные материалы

Фазовая, групповая и сверхсветовая скорости
Критически проанализированы понятия фазовой и групповой скоростей в дисперсной среде. На основании проведенного анализа был сделан вывод о неправомерности введения понятия “групповая скорость”. Также был сделан вывод, что модулирующий сигн ...

Связь Российской Федерации
Связь Российской Федерации (СРФ) на качественно новом этапе исторического развития определяется новым геополитическим положением России,происходящими в стране зкономическими преобразованиями. Изменение статуса ЕАСС и образование на ее осно ...

Групповой полет летательных аппаратов – алгоритм обработки информации относительного движения
В настоящее время наблюдается значительное повышение интереса к беспилотным летательным аппаратам (БЛА). Это происходит на фоне успешного применения БЛА в ряде военных конфликтов: в Афганистане, Югославии, где применялись американские БЛА ...

Разделы

Электромагнитный импульс как оружие

История вопроса и современное состояние знаний в области эми.

Лабораторные стенды в учебном процессе

Обзор и сравнительный анализ существующих стендов.

Аспекты технического знания

Технический объект и предмет технических наук.

Сварка металлов плавлением

Классификация электрической дуговой сварки.

Распределение примесей в кремнии

Описание процесса зонной плавки и ее математическая модель.



Наука сегодня и вчера - www.anytechnic.ru