Оптика.

К числу принципиальных открытий в оптике следует отнести обнаружение явления дифракции - отклонения света итальянским ученым Франческо Мариа Гримальди (1618-1663). Это было сделано в экспериментах на маленьких отверстиях, а также подтверждено в опытах на тонких нитях. В своих объяснениях Гримальди прибегает к аналогии с волнами, образующимися от брошенного в воду камня и огибающими препятствие, т.е. прибегает к волновой гипотезе света. Этим же он объясняет природу цветов по аналогии со звуком, который по Галилею определяется различными колебаниями воздуха. Подобные же опыты в Англии провел Роберт Гук (1635-1703), который также успешно экспериментировал с микроскопом Галилея, в частности заметил окрашивание тонких пленок в пучке света.

Принципиальными с точки зрения конечности скорости света были астрономические наблюдения, т.к. земные эксперименты по способу Галилея в 17 веке не дали положительных результатов. Основные результаты по этому вопросу, полученные при исследовании движения спутников Юпитера, были в окончательном виде сформулированы датским ученым Олафом Ремером (1644-1710).

Первые работы по физике у Ньютона были в области оптики и начинались с 1664 г. В 1672 г. он представил первый доклад в Королевское общество и этот доклад вызвал критические замечания (в частности у Гука) и долгую полемику. Ньютона это очень огорчило, он был человеком весьма раздражительным и чувствительным к критике. Тем не менее, он упорно продолжал свои работы, но свою фундаментальную работу "Оптика" опубликовал лишь в 1704 г., через год после смерти Гука. В этой работе по существу изложены основы современной физической оптики. Прежде всего, следует упомянуть его результаты по дисперсии света и природе цветов, его блестящие опыты с разложением света призмой и смешением цветов. Ньютон разработал зеркальный телескоп, за создание которого он был избран в члены Королевского общества и который стал отправной точкой прогресса инструментальной астрономии. Широко известны его экспериментальные работы в области интерференции, классические кольца Ньютона.

В части интерпретации экспериментальных результатов по оптике Ньютон не придерживался определенной позиции в выборе волновой или корпускулярной теории света, и это вызывало ряд затруднений. Здесь в отличие от механики, он изменяет своим принципам не выдвигать гипотез, его объяснения громоздки и трудновоспринимаемы, а в ряде случаев и ошибочны. В последнем издании своей "Оптики" Ньютон приводит почти одинаковое число аргументов в пользу как волновой, так и корпускулярной концепции. Тем не менее, его в течение 18 века считали приверженцем корпускулярной теории. Это, вероятно, было обусловлено затруднениями волновой теории в объяснении прямолинейности распространения света и преклонением перед механистическими представлениями Ньютона.

Подводя итоги 17 века, следует сказать о вкладе в оптику Гюйгенса, который издал в Лейдене в 1690 г. "Трактат о свете". В этой работе изложены основы волновой теории света с постулированием некоторой эфирной материи. Он предложил принцип построения огибающей волны, который и сегодня известен под его именем. Гюйгенс объяснил явления преломления света, подвел физическую основу под принцип Ферма. Он также интерпретировал двойное лучепреломление, которое было обнаружено в 1669 г. датским ученым Эразмом Бартолином (1635-1698) в опытах с кристаллами исландского шпата.

Из-за огромного авторитета Ньютона и отсутствия решающих научных аргументов в пользу волновой теории в 18 веке в основном придерживались корпускулярной теории света. Однако сохранялись и традиции волновой оптики, поскольку корпускулярная теория все же не могла объяснить многие экспериментальные данные. В частности, Эйлер в работе "Новая теория света и цветов" (1746) считает различную длину волн физической причиной различия цветов.

Перейти на страницу: 1 2 3 4 5 6

Дополнительные материалы

Принцип работы и методика измерения.
Прибор имеет два входа, на которые подаются сигналы от датчиков. На один вход поступает сигнал датчика количества оборотов коленчатого вала, который представляет собой импульс с амплитудой равной 5В. Этот импульс вырабатывается в тот момент, когда ...

Усилители электрических сигналов
В современной технике широко используется принцип управления энергией, позволяющий при помощи затраты небольшого количества энергии управлять энергией, но во много раз большей. Форма как управляемой, так и управляющей энергии может быть лю ...

Российский опыт ранней подготовки кадров для науки подходы, формы, результаты
В настоящее время широко обсуждается вопрос привлечения молодежи в науку и закрепления в ней молодых кадров, разрабатываются концепции, предлагаются различные виды государственных мер. Но вопрос этот является только частью более общей проб ...

Разделы

Электромагнитный импульс как оружие

История вопроса и современное состояние знаний в области эми.

Лабораторные стенды в учебном процессе

Обзор и сравнительный анализ существующих стендов.

Аспекты технического знания

Технический объект и предмет технических наук.

Сварка металлов плавлением

Классификация электрической дуговой сварки.

Распределение примесей в кремнии

Описание процесса зонной плавки и ее математическая модель.



Наука сегодня и вчера - www.anytechnic.ru