Копенгагенская интерпретация квантовой теории

Мы разъясним эти три ступени на простом мысленном эксперименте. Уже отмечалось, что атом состоит из атомного ядра и электронов, которые двигаются вокруг ядра. Также было установлено, что понятие электронной орбиты в некотором смысле сомнительно. Однако вопреки последнему утверждению можно сказать, что все же, по крайней мере в принципе, можно наблюдать электрон на его орбите. Быть может, мы и увидели бы движение электрона по орбите, если бы могли наблюдать атом в микроскоп с большой разрешающей силой. Однако такую разрешающую силу нельзя получить в микроскопе, применяющем обычный свет, поскольку для этой цели будет пригоден только микроскоп, использующий г-лучи, с длиной волны меньшей размеров атома. Такой микроскоп до сих пор не создан, но технические затруднения не должны нас удерживать от обсуждения этого мысленного эксперимента. Можно ли на первой стадии перевести результаты наблюдения в функцию вероятности? Это возможно, если выполняется после опыта соотношение неопределенностей. Положение электрона известно с точностью, обусловленной длиной волны г-лучей. Предположим, что перед наблюдением электрон практически находится в покое. В процессе наблюдения по меньшей мере один квант г-лучей обязательно пройдет через микроскоп и в результате столкновения с электроном изменит направление своего движения. Поэтому электрон также испытает воздействие кванта. Это изменит его импульс и его скорость. Можно показать, что неопределенность этого изменения такова, что справедливость соотношения неопределенностей после удара гарантируется. Следовательно, первый шаг не содержит никаких трудностей. В то же время легко можно показать, что нельзя наблюдать движение электронов вокруг ядра. Вторая стадия -- количественный расчет функции вероятности -- показывает, что волновой пакет движется не вокруг ядра, а от ядра, так как уже первый световой квант выбивает электрон из атома. Импульс г-кванта значительно больше первоначального импульса электрона при условии, если длина волны г-лучей много меньше размеров атома. Поэтому уже достаточно первого светового кванта, чтобы выбить электрон из атома. Следовательно, нельзя никогда наблюдать более чем одну точку траектории электрона; следовательно, утверждение, что нет никакой, в обычном смысле, траектории электрона, не противоречит опыту. Следующее наблюдение -- третья стадия -- обнаруживает электрон, когда он вылетает из атома. Нельзя наглядно описать, что происходит между двумя следующими друг за другом наблюдениями. Конечно, можно было бы сказать, что электрон должен находиться где-то между двумя наблюдениями и что, по-видимому, он описывает какое-то подобие траектории, даже если невозможно эту траекторию установить. Такие рассуждения имеют смысл с точки зрения классической физики. В квантовой теории такие рассуждения представляют собой неоправданное злоупотребление языком. В настоящее время мы можем оставить открытым вопрос о том, касается ли это предложение формы высказывания об атомных процессах или самих процессов, то есть касается ли это гносеологии или онтологии. Во всяком случае, при формулировании положений, относящихся к поведению атомных частиц, мы должны быть крайне осторожны.

Фактически мы вообще не можем говорить о частицах. Целесообразно во многих экспериментах говорить о волнах материи, например о стоячей волне вокруг ядра. Такое описание, конечно, будет противоречить другому описанию, если не учитывать границы, установленные соотношением неопределенностей. Этим ограничением ликвидируется противоречие. Применив понятия "волна материи" целесообразно в том случае, если речь идет об излучении атома. Излучение, обладая определенной частотой и интенсивностью, дает нам информацию об изменяющемся распределении зарядов в атоме; при этом волновая картина ближе стоит к истине, чем корпускулярная. Поэтому Бор советовал применять обе картины. Их он назвал дополнительными. Обе картины, естественно, исключают друг друга, так как определенный предмет не может в одно и то же время быть и частицей (то есть субстанцией, ограниченной в малом объеме) и волной (то есть полем, распространяющимся в большом объеме). Но обе картины дополняют друг друга. Если использовать обе картины, переходя от одной к другой и обратно, то в конце концов получится правильное представление о примечательном виде реальности, который скрывается за нашими экспериментами с атомами.

Перейти на страницу: 1 2 3 4 5 6

Дополнительные материалы

Становление классической физики
Говоря о формировании классической физики, естественно, в первую очередь сказать об отце классической механики в ее современном виде Ньютоне. Ньютон Исаак (04.01.1643-31.03.1727) – английский механик, оптик, астроном и математик, член Л ...

Академия наук и исследования в арктике деятельность полярной комиссии в 1914-1936 гг.
В 2006 г. исполняется 70 лет с момента упразднения одной из структур Академии наук - Полярной комиссии [1], организованной в 1914 г. для координации исследований, проводившихся в Арктике силами различных ведомств. Ее создание было связано ...

Измерение магнитострикции ферромагнетика
Данная работа посвящена изучению поведедения ферромагнетиков в магнитном поле. Хотя магнитное взаимодействие является малой поправкой к электрическим обменным силам, обусловливающим самопроизвольную намагниченность, тем не менее, они ...

Разделы

Электромагнитный импульс как оружие

История вопроса и современное состояние знаний в области эми.

Лабораторные стенды в учебном процессе

Обзор и сравнительный анализ существующих стендов.

Аспекты технического знания

Технический объект и предмет технических наук.

Сварка металлов плавлением

Классификация электрической дуговой сварки.

Распределение примесей в кремнии

Описание процесса зонной плавки и ее математическая модель.



Наука сегодня и вчера - www.anytechnic.ru