Математический маятник. Собственные частоты.

Математический маятник имеет длину l и массу m. Точка подвески совершает колебания вдоль вертикальной оси относительно среднего положения по закону х = Asinw t . Имеет место начальное возмущение маятника по горизонтальной оси. Известны [10] две особые частоты w 1,2, которые разграничивают качественно отличающиеся между собой режимы колебаний маятника. В этом случае лишь продемонстрируем, что частоты w 1,2 и связанные с ними события представляют, как и предыдущие случаи, следствие закона сохранения и превращения энергии определенного вида.

К основным состояниям маятника мы можем отнести его принадлежность к крайнему нижнему положению относительно точки подвески и к горизонтальной плоскости, к которой принадлежит это положение. Для первого состояния характерна энергия

Wо1 = mgl/2,

где g — ускорение свободного падения. Энергия Wо1 представляет собой работу, совершенную при выходе массы m из точки подвески как начала отсчета в поле центральной силы тяжести в крайнее нижнее положение. Для второго состояния характерна энергия выхода тела с эквипотенциального уровня, определяемого расстоянием l относительно точки подвески:

Wо2 = mgl.

Энергия возмущения маятника характеризует его колебания. Собственную энергию колебаний маятника с частотой w определяем, исключая взаимодействие материальной точки с массой m и подвески. В этом случае мы рассматриваем маятник, включающий в себя точку подвески, нить, материальную точку, как одно целое: A = l . Собственную энергию W* мы записываем как полную энергию осциллятора:

W* = mw 2A2/2.

В результате следуют два пороговых соотношения:

;

Первое соотношение определяет порог чувствительности материальной точки к колебаниям подвески. Режим накачки (резонанс) при w = w 1 переходит в режим вынужденных колебаний при w > w 1, где материальная точка и подвеска образуют одно целое. Второе энергетическое пороговое соотношение разграничивает фазу колебаний маятника относительно крайнего нижнего положения как устойчивого (аттрактора) и фазу колебаний с устойчивым положением, постепенно поднимающимся вплоть до вертикального. Соотношения, записанные в виде w 2A2/gl, выполняют роль коэффициентов подобия аналогично числам Рейнольдса, Фруда, а также другим числам, полученным в предыдущих разделах.

Дополнительные материалы

Принцип работы и методика измерения.
Прибор имеет два входа, на которые подаются сигналы от датчиков. На один вход поступает сигнал датчика количества оборотов коленчатого вала, который представляет собой импульс с амплитудой равной 5В. Этот импульс вырабатывается в тот момент, когда ...

Разумный замысел во Вселенной
Если мы откроем Большую Советскую энциклопедию за 1970 год, то найдем в ней статьи "Астробиология" и "Астроботаника". В этих статьях рассматривается вопрос о возможности существования жизни за пределами Земли. В статье ...

Групповой полет летательных аппаратов – алгоритм обработки информации относительного движения
В настоящее время наблюдается значительное повышение интереса к беспилотным летательным аппаратам (БЛА). Это происходит на фоне успешного применения БЛА в ряде военных конфликтов: в Афганистане, Югославии, где применялись американские БЛА ...

Разделы

Электромагнитный импульс как оружие

История вопроса и современное состояние знаний в области эми.

Лабораторные стенды в учебном процессе

Обзор и сравнительный анализ существующих стендов.

Аспекты технического знания

Технический объект и предмет технических наук.

Сварка металлов плавлением

Классификация электрической дуговой сварки.

Распределение примесей в кремнии

Описание процесса зонной плавки и ее математическая модель.



Наука сегодня и вчера - www.anytechnic.ru