Формирование стрелы времени

Теперь нужно ответить на самый главный и интригующий вопрос, касающийся времени – это вопрос об не обратимости времени.

Мы уже отмечали, что события наступают в результате протекания тех или иных процессов. Даже само событие есть какой-то процесс со своей динамикой, со своими энерго превращениями. Поэтому что бы ответить на вопрос о возможности или не возможности обратной цепи событий, обратного хода времени, нужно ответить на вопрос о возможности или невозможности обратного течения процессов. Вопрос обратимости или не обратимости времени – это вопрос обратимости или не обратимости процессов в динамике. Последнее проходит красной линией в исследованиях Пригожина и его коллег по данному вопросу. (См. например, [Л-15, 16]).

Сначала о обратимости процессов в динамике Ньютона, динамике малого, счётного числа взаимодействующих частиц.

Рассмотрим один из наиболее ярких примеров обратимости процессов в динамике Ньютона – это обратимость движения математического маятника. При качании маятника в ту или иную сторону движения строго повторяются и при описании движения время можно принимать как со знаком плюс так и со знаком минус. Ни с точки зрения количества, ни с точки зрения качества оба описания не будут противоречить друг другу. Качание в одну сторону строго противоположно, обратимо качанию в другую сторону. Усложним ситуацию. Рассмотрим цепочку подвешенных на прямой линии достаточно близко друг к другу совершенно одинаковых математических маятников. Отклоним первый маятник, то есть за счёт совершения работы передадим ему потенциальную энергию, и отпустим. Взаимодействие будем описывать законами центрального абсолютно упругого удара. В системе начнётся процесс последовательного соударения и в цепочке возникнет процесс передачи импульса и энергии вдоль цепочки. При этом каждый акт взаимодействия между массами двух маятников сопровождается переходом кинетической энергии в потенциальную и наоборот и совершается работа против силы или силой. Этот процесс будет протекать до последнего маятника. После того как последний маятник отклонится и энергия системы сосредоточится в потенциальной энергии последнего маятника, весь процесс повторится, но в обратной последовательности, в обратном направлении. Мы растянули процесс во времени, но он остался обратимым. Однако если цепочку маятников предположить бесконечной длины, то процесс передачи импульса и энергии по цепочке станет необратимым. Таким образом теоретически необратимость процесса возможна и в классической динамике Ньютона, но это не локализованная в пространстве и во времени, гипотетическая необратимость, за счёт несчётного числа маятников.

Теперь о необратимости процессов в термодинамике, динамике большого, несчётного числа частиц, которая, как показывает практика, локализована и во времени и в пространстве.

Исторически сложилось так, что при рассмотрении процессов в неравновесных термодинамических системах в тени остаётся один из самых фундаментальных законов природы – закон сохранения результирующего импульса. В основу термодинамики был положен факт существования равновесного состояния в тепловых системах и неизбежности его наступления. Были сформулированы нулевой и второй постулаты, которые напрочь заслонили закон сохранения результирующего импульса как системный закон в применении к системам из несчётного числа частиц.

Перейти на страницу: 1 2 3 4 5 6

Дополнительные материалы

Кодирование речи
Необходимость кодирования речевой информации возникла не так давно, но на сегодняшний момент, в связи с бурным развитием техники связи, особенно мобильной связи, решение этой проблемы имеет большое значение при разработке систем связи. ...

Проектирование технологии дуговой сварки на основе модели формирования показателей свариваемости низколегированных сталей
В настоящее время в области свариваемости низколегированных сталей (НЛС) накоплен значительный теоретический и экспериментальный материал, однако обеспечение достаточной свариваемости НЛС по-прежнему является сложной технологической задач ...

Оптимизация работы силовых трансформаторов
Силовые трансформаторы подразделяют на сухие, устанавливаемые в помещениях с пжаро- и взрывоопасной средой, масляные для наружной и внутренней установки в неопасной с точки зрения пожара и взрыва среде и трансформаторы с заполнением негорю ...

Разделы

Электромагнитный импульс как оружие

История вопроса и современное состояние знаний в области эми.

Лабораторные стенды в учебном процессе

Обзор и сравнительный анализ существующих стендов.

Аспекты технического знания

Технический объект и предмет технических наук.

Сварка металлов плавлением

Классификация электрической дуговой сварки.

Распределение примесей в кремнии

Описание процесса зонной плавки и ее математическая модель.



Наука сегодня и вчера - www.anytechnic.ru