Генно-инженерные методы как новый биотехнологический подход в аграрном секторе США

Четвёртым пунктом развития биотехнологии явилась энзимология и клеточная биология, которые создали для промышленных условий возможности получения иммобилизованных ферментных и клеточных систем или иммобилизованных клеточных катализаторов согласно номенклатуре Европейской федерации по биотехнологии 1983 г.

Пятый пункт современной биотехнологии – создание трансгенных растений и животных с целенаправленными признаками и свойствами.

В мире США – крупнейший производитель и экспортёр биотехнологической продукции. Роль лидера обусловлена прежде всего высокими ассигнованиями государственного и частного секторов на фундаментальные и прикладные исследования, количеством занятых в НИОКР биотехнологических фирм и крупных промышленных компаний, в основе технологической мощи которых лежат собственные исследования и разработки. В финансировании фундаментальных и прикладных работ по биотехнологии основную роль осуществляет Национальный научный фонд, Министерства здравоохранения и социального обеспечения, сельского хозяйства, энергетики, химической и пищевой промышленности, обороны, НАСА, внутренних дел и др. Ассигнования выделяются по программно-целевому принципу, т. е. субсидируются и заключаются контракты на исследовательские проекты, которые выполняют внешние (по отношению к финансирующим инстанциям) организации. Это, прежде всего, университеты, научные центры, колледжи… В 90-е годы одновременно с поддержкой программ Министерства обороны, ориентированных на краткосрочную и долгосрочную перспективу, Правительство США резко увеличило финансирование наук о жизни в рамках Национального научного фонда и Национального института здоровья. Планируется к 2003 году довести бюджет Национального института здоровья до более чем 20 млрд долларов при увеличении объёма и продолжительности грантов. Основные компании, работающие в области биотехнологии: "Майкоген", "Калгене", "Эсгроу", "Сиба Сидс", "Монсанто", "Генентек", "Эмерикен Бридерс Сервис" и другие.

Бурное развитие биотехнологии позволяет строить далеко идущие планы. Только разработка методов генной инженерии, основанных на создании рекомбинантных ДНК, привела к тому "биотехнологическому буму", свидетелями которого мы являемся. Сама история этой науки – генной инженерии – яркий пример того, как сложно прогнозировать внедрение в практику достижений фундаментальных наук. Разработка технологии – результат значительных вложений в развитие молекулярной биологии за последние сорок с лишним лет. А ведь не так давно, в конце 60-х годов, многие биологи сетовали, что слишком уж много внимания уделяется этой престижной области биологии и химии, которая не даёт ничего полезного. Сегодня всем понятно, что открытия молекулярной биологии и генетики глубоко скажутся на судьбе человечества.

Основными методами генной инженерии являются молекулярное клонирование и секвенирование (определения последовательности нуклеотидов) ДНК. Эти методы тесно связаны: клонирование позволяет выделить очищенные участки ДНК, а секвенирование нуклеотидов, составляющих молекулу ДНК, предоставляют возможность анализировать и охарактеризовать эти выделенные участки.

Предварительные оценки общего количества генов в геноме ядра любой клетки растений или животных выявили, что оно колеблется от 10000 до 100000. Поэтому замечательно то, что, применяя эти методы, можно выделить один-единственный ген из тысяч в геноме и манипулировать им таким образом, чтобы добиться его экспрессии в клетке-реципиенте. В этом случае используются методы выделения, клонирования и переноса.

Первой ступенью в генно-инженерной работе является локализация целевого гена в геноме. Зачастую, исследователи работают с несколькими уже известными генами, поэтому для облегчения работы созданы библиотеки ДНК (библиотеки генов). В дальнейшем применяют специфические ферменты-рестриктазы, узнающие определённые последовательности нуклеотидов в ДНК и разрезающие цепи, причём ген можно разрезать в любом месте. Затем сшивают фрагменты с помощью специальных ферментов. Фрагменты комбинируют в любой нужной для исследователя последовательности, сшивают различные гены в один; при этом можно изобрести новый белок и синтезировать для него ген. В любой существующий ген можно ввести локальные изменения – точечные мутации, пропуски, вставки, перевёртыши. Любой ген можно размножить, используя полимеразную цепную реакцию. Различные гены можно клонировать, а также синтезировать разные варианты одного и того же гена. Все генетические изменения можно легко вносить в живой организм. Перечисленные методы называют методами первого поколения.

В последние 4-5 лет исключительно благодаря проекту "Геном человека", были развиты новые методы (так называемого второго и третьего поколений), которые включают как главный компонент автоматизацию большинства процессов. Например, секвенсовой технологией третьего поколения является на сегодняшний день – прямое чтение оснований в последовательности ДНК с использованием сканирующих туннельных микроскопов или микроскопов, работающих на уровне субатомного разрешения.

Перейти на страницу: 1 2 3 4 5 6

Дополнительные материалы

Оптическая обработка информации
Современная практика и научные исследования требуют измерений высоких и сверхвысоких напряжений — до 10 МВ и больших токов — до 1¸2 МА. Напряжения и токи при этом могут быть постоянными, переменными, и импульсными с длительностью им ...

Эффект автодинного детектирования
В связи с развитием современных технологий, требующих непрерывного контроля за многими параметрами технологического процесса, состоянием оборудования и параметрами материалов и сред становится всё более актуальной задача создания неразруша ...

Физическая сущность парадокса близнецов
Показано, что мнимый парадокс близнецов имеет место в СТО из-за взаимного неразличения стандартного времени (путиподобного собственного времени движущегося объекта) и координатоподобного собственного времени инерциальной системы отсчета (И ...

Разделы

Электромагнитный импульс как оружие

История вопроса и современное состояние знаний в области эми.

Лабораторные стенды в учебном процессе

Обзор и сравнительный анализ существующих стендов.

Аспекты технического знания

Технический объект и предмет технических наук.

Сварка металлов плавлением

Классификация электрической дуговой сварки.

Распределение примесей в кремнии

Описание процесса зонной плавки и ее математическая модель.



Наука сегодня и вчера - www.anytechnic.ru