Универсальный задачник

Немалую ценность «Liber abaci» придавало наличие в ней множества разнообразных задач, одни из которых были заимствованы из арабских и прочих источников, а другие придуманы самим автором. Большую группу составляли чисто арифметические и алгебраические примеры: на выполнение действий над числами, извлечение корней, решение уравнений или систем и т.д. В другую группу входили сюжетные задачи (в том числе связанные с житейскими ситуациями): на смешение, определение стоимости или количества купленного товара, раздел имущества и разного рода финансовые расчеты между людьми (задачи коммерческой арифметики) и т.п.

Например, к задачам на смешение относились два вида задач «на сплавы»: на определение пробы сплава, сделанного из других сплавов известного состава и количества, и на выяснение того, сколько каждого из данных сплава потребуется, чтобы получить сплав нужной пробы. А одной из типичных задач коммерческой арифметики была задача на раздел некоторой суммы денег пропорционально долям участников.

В трактат Фибоначчи вошли также текстовые задачи на воспроизведение определенного действия, например нахождения числа по его части. Вот одна из них. Четвертая и третья части дерева находятся под землей и составляют 21 фут. Чему равна длина всего дерева?

Некоторые из затронутых в труде Леонардо вопросов в разное время привлекали внимание ученых-математиков и не раз упоминались в более поздних сочинениях. Так произошло, в частности, с популярной в средние века задачей на отыскание наименьшего набора различных гирь, с помощью которого можно уравновесить любой груз с целочисленной массой, не превосходящей заданного числа.

Но наиболее известной по сей день остается, конечно же, задача о размножении кроликов, впервые появившаяся именно в «Liber abaci». Спрашивается, сколько пар кроликов родится за год от одной пары, если кролики начинают приносить потомство со второго месяца и каждая пара через месяц производит на свет еще одну пару? Ее решение привело Фибоначчи к открытию едва ли ни самой знаменитой числовой последовательности

1, 1, 2, 3, 5, 8, 13, . ,

названной впоследствии его именем и породившей множество исследований, в особенности связанных с изучением свойств золотой пропорции.

Дополнительные материалы

Случаи выздоровления - не случайны!
Еше древние философы поняли, что по частице мира можно сделать некоторые верные заключения о его недоступной части. Так и глубокий ум, помещенный в камеру с зеркалом, изучая только себя, способен догадаться о многом. Рак считается наст ...

Первый отечественный физик – продолжатель трудов Максвелла и Герца
П. Н. Лебедев наряду с М. В. Ломоносовым одна из замечательных фигур истории русской физики. Академик С. И. Вавилов, президент АН СССР в 1945 – 1951 гг. Петр Николаевич Лебедев – «…великий русский физик, внесший после смерти Г. ...

Трех- и четырехволновое рассеяние света на поляритонах в кристаллах ниобата лития с примесями
Задачей данной работы является исследование рассеяния света на равновесных и возбуждаемых поляритонных состояниях в кристаллах. К таким типам рассеяния относятся спонтанное параметрическое рассеяние (СПР) и некоторые разновидности че ...

Разделы

Электромагнитный импульс как оружие

История вопроса и современное состояние знаний в области эми.

Лабораторные стенды в учебном процессе

Обзор и сравнительный анализ существующих стендов.

Аспекты технического знания

Технический объект и предмет технических наук.

Сварка металлов плавлением

Классификация электрической дуговой сварки.

Распределение примесей в кремнии

Описание процесса зонной плавки и ее математическая модель.



Наука сегодня и вчера - www.anytechnic.ru