Универсальный задачник

Немалую ценность «Liber abaci» придавало наличие в ней множества разнообразных задач, одни из которых были заимствованы из арабских и прочих источников, а другие придуманы самим автором. Большую группу составляли чисто арифметические и алгебраические примеры: на выполнение действий над числами, извлечение корней, решение уравнений или систем и т.д. В другую группу входили сюжетные задачи (в том числе связанные с житейскими ситуациями): на смешение, определение стоимости или количества купленного товара, раздел имущества и разного рода финансовые расчеты между людьми (задачи коммерческой арифметики) и т.п.

Например, к задачам на смешение относились два вида задач «на сплавы»: на определение пробы сплава, сделанного из других сплавов известного состава и количества, и на выяснение того, сколько каждого из данных сплава потребуется, чтобы получить сплав нужной пробы. А одной из типичных задач коммерческой арифметики была задача на раздел некоторой суммы денег пропорционально долям участников.

В трактат Фибоначчи вошли также текстовые задачи на воспроизведение определенного действия, например нахождения числа по его части. Вот одна из них. Четвертая и третья части дерева находятся под землей и составляют 21 фут. Чему равна длина всего дерева?

Некоторые из затронутых в труде Леонардо вопросов в разное время привлекали внимание ученых-математиков и не раз упоминались в более поздних сочинениях. Так произошло, в частности, с популярной в средние века задачей на отыскание наименьшего набора различных гирь, с помощью которого можно уравновесить любой груз с целочисленной массой, не превосходящей заданного числа.

Но наиболее известной по сей день остается, конечно же, задача о размножении кроликов, впервые появившаяся именно в «Liber abaci». Спрашивается, сколько пар кроликов родится за год от одной пары, если кролики начинают приносить потомство со второго месяца и каждая пара через месяц производит на свет еще одну пару? Ее решение привело Фибоначчи к открытию едва ли ни самой знаменитой числовой последовательности

1, 1, 2, 3, 5, 8, 13, . ,

названной впоследствии его именем и породившей множество исследований, в особенности связанных с изучением свойств золотой пропорции.

Дополнительные материалы

Конструирование машин
Из истории технической эволюции мы знаем, что освоение некоторых субстанций приводило к скачкам в развитии техники, т. е. к техническим революциям. Действительно, всякий раз, когда техника овладевала веществом, энергией или информацией на ...

Измерение высоты нижней границы облаков
Неблагоприятная экологическая обстановка на территории Российской Федерации требует уделения особого внимания вопросам охраны природы и экологического воспитания. Контроль за воздействием от хозяйственной деятельности человека на окружающу ...

Связь Российской Федерации
Связь Российской Федерации (СРФ) на качественно новом этапе исторического развития определяется новым геополитическим положением России,происходящими в стране зкономическими преобразованиями. Изменение статуса ЕАСС и образование на ее осно ...

Разделы

Электромагнитный импульс как оружие

История вопроса и современное состояние знаний в области эми.

Лабораторные стенды в учебном процессе

Обзор и сравнительный анализ существующих стендов.

Аспекты технического знания

Технический объект и предмет технических наук.

Сварка металлов плавлением

Классификация электрической дуговой сварки.

Распределение примесей в кремнии

Описание процесса зонной плавки и ее математическая модель.



Наука сегодня и вчера - www.anytechnic.ru