Замедление времени и парадокс часов

Преобразования (2.10) внешне напоминают преобразование Лоренца, но сходство чисто внешнее. На самом деле между ними существует принципиальное различие. В СТО рассматривается связь между двумя «без массовыми» ИСО, а здесь мы имеем три системы, две из которых связаны с массивными телами, а третья – с сигналом. Это приводит к новым результатам и устраняет парадоксы. Покажем это на примере эффектов «сокращения длин» и «замедление времени».

В СТО доказывается, что время в движущихся ИСО течет в раз медленнее, чем в покоящихся. Замедление касается всех процессов, включая и биологические. Такая интерпретация неизбежно приводит к парадоксу близнецов, поскольку каждая система движется относительно другой и нет никакого способа отличить одну ИСО от другой. Аналогичное следствие вытекает и из (2.10),

, , (3.1)

однако оно имеет совершенно иной смысл. Величина, , которая в СТО характеризует ритм времени всей системы, здесь относится только к сигналу, точнее к шкале измерителя времени. Она одинакова для всех МСО и в этом нет никакого парадокса, поскольку сигнал проходит один и тот же путь относительно каждой системы и на это тратит одинаковую энергию.

Разумеется, это не противоречит реально наблюдаемому замедлению времени жизни элементарных частиц, поскольку частицы сами движутся, т.е. сами являются источниками сигнала.

То же самое относится и к другому эффекту – сокращению длин.

, (3.2)

Сокращается не длина предмета, а деформируется шкала линейки. Ведь предмет не станет длиннее или короче, если измерять его не в метрах, а в сантиметрах или километрах.

Метрика массивных систем отсчета

Определим структуру пространства вокруг массивных тел. Пусть заданы два тела, с которыми связаны МСО и , снабженные соответствующими измерительными приборами. Введем обобщенные координаты и образуем метрику

(4.1)

где

Для простоты расчета будем считать, что тела имеют шарообразную форму и движутся относительно друг друга с некоторой скоростью. Выберем сферическую систему координат с началом в центре тела

,

Второе тело , будем считать малым и в качестве его метрики выберем метрику Минковского с сигнатурой (1,1,1,-1). Полагая , и учитывая (3.1) и (3.2), находим

; , (4.2)

, (4.3)

Перейти на страницу: 1 2

Дополнительные материалы

«Liber аbaci» Леонардо Фибоначчи
Отец мой, родом из Пизы, служил синдиком на таможне в Бужи, в Африке, куда он меня взял с собою для изучения искусства считать. Удивительное искусство считать при помощи только девяти индусских знаков мне так понравилось, что я непременно ...

Первый отечественный физик – продолжатель трудов Максвелла и Герца
П. Н. Лебедев наряду с М. В. Ломоносовым одна из замечательных фигур истории русской физики. Академик С. И. Вавилов, президент АН СССР в 1945 – 1951 гг. Петр Николаевич Лебедев – «…великий русский физик, внесший после смерти Г. ...

Верификация физической нереализуемости гравитационных сингулярностей
Рассмотрено совместное решение уравнений ОТО и термодинамики для идеальной жидкости, обладающей топологией полого тела. Найдены пространственные распределения основных термодинамических и гравитермодинамических её параметров и характеристи ...

Разделы

Электромагнитный импульс как оружие

История вопроса и современное состояние знаний в области эми.

Лабораторные стенды в учебном процессе

Обзор и сравнительный анализ существующих стендов.

Аспекты технического знания

Технический объект и предмет технических наук.

Сварка металлов плавлением

Классификация электрической дуговой сварки.

Распределение примесей в кремнии

Описание процесса зонной плавки и ее математическая модель.



Наука сегодня и вчера - www.anytechnic.ru