«Гравитационный парадокс» и его решение

Иллюстрацией к предложенному методу является рис. 6б.

Применение формулы (1) в тех случаях, когда пробное тело находится не на краю полости, а в произвольной точке внутри нее, связано с вычислением сил тяготения, создаваемых шаром, радиус которого равен расстоянию от центра полости до положения пробной массы (см. рис. 10а). Плотность шара принимается равной разности плотности полости и плотности окружающей среды.

Рис. 10. Тождественное расположение масс: а) симметричное, б) асимметричное

В действительности асимметрично расположенная масса имеет форму тела, выделенного красным цветом на рис. 10б. Но гораздо удобнее вычислять действие массы, имеющей форму шара (выделен на рис. 10а синим цветом), благо притяжение ими пробной массы тождественно равно. Направление действия силы во всех случаях определяется положением центра масс избыточного вещества, выделенного красным цветом.

Кроме доказательства наличия сил тяготения внутри сферически-симметричной полости приведем графическую интерпретацию независимости сил тяготения от радиуса полости в случае постоянства расстояния между пробной массой и ее центром (см. рис. 11а).

Рис. 11. Независимость сил тяготения от радиуса полости

Следует доказать, что силы тяготения не изменятся при изъятии вещества, окружающего полость в форме оболочки, подобной и подобно расположенной. Действительно, сравним величину и положение асимметрично расположенных масс до и после изъятия оболочки. Асимметрично расположенное вещество в обоих случаях показано красным цветом. Изъятое в виде оболочки вещество – синим.

Обратим внимание на следующее обстоятельство. По условию положение пробной массы относительно центра полости в обоих случаях не меняется, следовательно, толщина асимметрично расположенного вещества остается постоянной. А площадь возрастает пропорционально квадрату расстояния. Отсюда, удаление центра масс, асимметрично расположенного вещества, точно компенсируется увеличением его массы.

Правда, приведенное доказательство – просто по иному изложенная «Теорема Ньютона», но из опыта изложения автор знает, что неизменность сил тяготения от радиуса полости вызывает некоторое недоверие у части читателей, поэтому автор счел необходимым остановиться на данном факте отдельно.

Вывод из проведенного анализа следующий: применять обобщение, предложенное Э. Милном и В. Мак-Кри, не корректно, как противоречащее общим законам физики.

Данный вывод согласуется и с законами математического анализа. Согласно аксиоматике геометрии Евклида, распространение отрезка на прямую линию невозможно. Поскольку это противоречило бы аксиоме «порядка», согласно которой, при откладывании отрезка на прямой линии, прямая обязательно сохранит хотя бы одну внешнюю точку по отношению к концам отрезка. Что, конечно, противоречило бы условию отображения отрезка на всю прямую. Отсюда распространение бесконечной последовательности сферически-симметричных оболочек на все пространство невозможно.

Распространение бесконечной последовательности отрезков на прямую линию незаконно также и по причине нарушения аксиомы «счетности», поскольку любое количество отрезков может быть объединено в один отрезок, длина которого всегда может быть выражена через начальный отрезок, взятый за масштаб. Что привело бы к счетности длины прямой линии.

Перейти на страницу: 1 2 3 4 5 6 7

Дополнительные материалы

Разработка информационной системы интеллектуального здания на примере музея-усадьбы Н.Е. Жуковского
Работа состоит из четырех разделов. В первом рассматривается концепция и определение интеллектуального здания. Во втором проводится анализ различных систем управления и применяемых протоколов взаимодействия устройств. В третьем разделе при ...

В. И. Вернадский — ученый и организатор науки
Если бросить взгляд на историю человеческой мысли, мы увидим, как мучительно трудно давался людям отход от традиционного образа мышления. Стремление придерживаться испытанных временем и предписанных авторитетами взглядов, привычка следоват ...

Прямой свет
Эфирная природа звездной аберрации и явления Никитина Кризис физики, возникший в начале 20-го века в связи с резким расширением необъясненной физической картины мира, поставил выбор перед наукой: либо принять тяжелый вызов истории – при ...

Разделы

Электромагнитный импульс как оружие

История вопроса и современное состояние знаний в области эми.

Лабораторные стенды в учебном процессе

Обзор и сравнительный анализ существующих стендов.

Аспекты технического знания

Технический объект и предмет технических наук.

Сварка металлов плавлением

Классификация электрической дуговой сварки.

Распределение примесей в кремнии

Описание процесса зонной плавки и ее математическая модель.



Наука сегодня и вчера - www.anytechnic.ru