Внутреннее решение Шварцшильда для идеальной жидкости в сопутствующей СО

Рассмотрим внутреннее решение Шварцшильда для идеальной жидкости, которая калибровочно самосжимается в СО Вейля и, поэтому, имеет жесткую сопутствующую ей СО. В этой собственной СО жидкости, неоднородно сжатой гравитацией, линейный элемент имеет статическую и сферически симметричную форму [10] и поэтому задается приращениями угловых координат, приращением фотометрического радиуса r сферической поверхности (значение которого определяется через ее площадь и в непустом пространстве с кривизной в принципе может изменяться немонотонно вдоль метрического радиального отрезка rметр) и приращением координатного (астрономического) времени t. Функции a(r) и b(r), нормирующие квадраты этих приращений, характеризуют соответственно кривизну и физическую неоднородность собственного пространства жидкости и связаны с собственной плотностью массы μ(r) и собственным давлением p(r) дифференциальными уравнениями [10]. Из этих-то уравнений и могут быть найдены функции a(r) и b(r), а также радиальное распределение гравитационного радиуса rg(r) внутренней части жидкости, отделенной от ее верхней внешней части сферической поверхностью с фотометрическим радиусом r. На граничной (крайней) поверхности жидкости с фотометрическим радиусом re: a(re)b(re) = 1.

Зная функцию b(r) можно найти радиальное распределение несобственного (координатного) значения скорости света vc(r) = c(b)1/2, которое определяется в астрономическом (координатном) времени t СО всего жидкого тела и является неодинаковым в разных точках этого тела (зависит от радиальной координаты точки распространения света). Здесь c – собственное значение скорости света, которое определяется в собственном квантовом времени точки распространения света, и, поэтому, является одинаковым во всех точках собственных пространств вещества (константа скорости света). Космологическая постоянная уравнений гравитационного поля λ = 3(1 – rge/rc)/rc2 задает (вместе с гравитационным радиусом всей жидкости rge ≡ rg(re)) максимальное значение фотометрического радиуса в СО жидкости (радиуса rc горизонта видимости условно пустого пространства над жидкостью) и, тем самым, указывает на наличие адиабатного равновесного процесса калибровочного самосжатия молекул жидкости в космическом пространстве.

Дополнительные материалы

Предварительный усилитель
Микроэлектроника - это область электроники, занимающаяся созданием электронных узлов, блоков и устройств в миниатюрном интегральном исполнении. Ход развития электроники был предопределен резким увеличением функций, выполняемых РЭА и по ...

Модель портального манипулятора
Данная работа посвящена построению и исследованию динамической модели портального манипулятора, описывающей переходные процессы в манипуляторе с шаговым приводом в момент его позиционирования. При построении были использованы эксперимента ...

Оптические и магнитооптические диски
Первые оптические лазерные диски появились в 1972 году и продемонстрировали большие возможности по хранению информации. Обьемы хранимой на них информации позваляли использовать их для хранения огромных массивов данных ...

Разделы

Электромагнитный импульс как оружие

История вопроса и современное состояние знаний в области эми.

Лабораторные стенды в учебном процессе

Обзор и сравнительный анализ существующих стендов.

Аспекты технического знания

Технический объект и предмет технических наук.

Сварка металлов плавлением

Классификация электрической дуговой сварки.

Распределение примесей в кремнии

Описание процесса зонной плавки и ее математическая модель.



Наука сегодня и вчера - www.anytechnic.ru