Физическая сущность горизонта видимости и сферы Шварцшильда. Космологический возраст Вселенной

Леметром [10, 14] и, независимо, Робертсоном [10, 15] было найдено специальное преобразование координат. С помощью этого преобразования можно перейти от сопутствующей веществу жесткой СО к несопутствующей СО, в которой размеры как макро- так и микрообъектов вещества тела взаимно пропорционально изменяются во времени. В случае пренебрежительно малых значений гравитационного радиуса (rge≈0) этого тела, расположенного вдали от других астрономических тел, будем иметь: rc≈(3/λ)1/2=c/He. Выраженный через rc линейный элемент самосжимающегося тела будет иметь сферически симметричную форму не только в СО вещества но и в СО Вейля [10].

Эта форма лишь формально соответствует вселенной де Ситтера. Радиальная координата произвольной мировой точки в СО Вейля равна: R=Rk·exp[He(Tk–T)]=r·[1-He(T–Tk)], где Rk=r – радиальная координата в СО Вейля этой точки ПВК эволюционно самосжимающегося тела в момент времени Tk (Tk) калибровки размера эталона длины в СО Вейля по его размеру в собственной СО этого тела. Время T=t+(rc/2c)·ln(1–r2/rc2) отсчитывается в СО Вейля по метрически однородной шкале, по которой скорость квазиравновесных физических процессов в веществе не изменяется, несмотря на постепенное уменьшение расстояний между его взаимодействующими элементарными частицами. Поэтому, то оно и рассматривается нами далее как космологическое время. Время T=Tk+(1/He)[1–exp{He(Tk–T)}] отсчитывается в СО Вейля по физически однородной шкале [16, 17], которая метрически не откалибрована, но зато гарантирует неизменность абсолютных значений скорости света Vc и энергии фотонов в процессе распространения света. Поэтому, эта шкала (как и шкала длины в СО Вейля) требует непрерывной перенормировки. Благодаря перенормировке этой шкалы времени момент мнимой сингулярности (момент самосжатия вещества до нулевых размеров) будет «ожидаться» по ней всегда через один и тот же конечный промежуток времени T–Tk=He–1, независимо от длительности прошедшего времени.

Поэтому, на самом деле, этот момент времени принципиально недостижим. А это означает физическую нереализуемость такой сингулярности. Постоянная Хаббла He=–VH/R определяет в СО Вейля по метрически однородной шкале времени пропорциональность между скоростью движения точек самосжимающегося тела VH и радиальным расстоянием R до этих точек в евклидовом пространстве СО Вейля. Значение He эволюционно не изменяется и, следовательно, не зависит от усредненной плотности материи в расширяющейся Вселенной. Поэтому точное определение значения этой усредненной плотности, как и связанная с ней проблема наличия во Вселенной скрытой массы или же так называемой темной небарионной материи являются неактуальными. Значение соотношения –VH/R, определяемого в СО Вейля по физически однородной шкале времени, наоборот, эволюционно изменяется и становится неизменной величиной лишь когда непрерывно перенормируется. Аналогично в СО Вейля по метрически однородной шкале времени неизменным является лишь непрерывно перенормируемое (в соответствии с эволюционным уменьшением вещественного эталона длины) значение скорости света.

В соответствии с этим скорости радиального движения не только макрочастиц самосжимающегося вещества тела, но также и всех точек условно пустого собственного пространства калибровочно самосжимающегося тела определяются в СО Вейля по метрически однородной шкале времени зависимостью Хаббла:

V = dR/dT = –HeRkexp[–He(T – Tk)] = –HeR.

И они абсолютно не зависят, как было показано в [16], от параметров уравнений гравитационного поля ОТО. С учетом релятивистского замедления времени несобственные значения скоростей света в СО эволюционно самосжимающегося тела (vc) и в СО Вейля (Vc) связаны между собой конформной релятивистской зависимостью [17]. Фронт собственного времени t физического тела соответствует одновременным (когда собственное время неоднородно – совпадающим [17, 18]) событиям и распространяется в собственной СО тела принципиально мгновенно. Как следует из преобразований Лоренца для скоростей, в СО Вейля этот фронт распространяется, хотя и с большей чем несобственное значение скорости света, однако, все же конечной скоростью. Зная эту скорость, можно найти формулу для разницы между космологическими возрастами событий, одновременных в СО эволюционно самосжимающегося тела, в произвольных точках j и i условно пустого собственного пространства этого тела. Согласно этой формуле, при любых значениях rge и, следовательно, при любых значениях массы тела события в точках горизонта видимости собственного пространства этого тела имели место в космологическом времени в бесконечно далеком прошлом. И, следовательно, горизонт видимости любого эволюционно самосжимающегося тела, как и показано в [16, 17], охватывает все бесконечное абсолютное пространство.

Перейти на страницу: 1 2 3

Дополнительные материалы

Принцип работы и методика измерения.
Прибор имеет два входа, на которые подаются сигналы от датчиков. На один вход поступает сигнал датчика количества оборотов коленчатого вала, который представляет собой импульс с амплитудой равной 5В. Этот импульс вырабатывается в тот момент, когда ...

Тепловой расчет автомобильного двигателя
На наземном транспорте наибольшее распространение получили двигатели внутреннего сгорания. Эти двигатели отличаются компактностью, высокой экономичностью, долговечностью и применяются во всех отраслях народного хозяйства. В настояще ...

Атомная энергия за и против
Современная цивилизация немыслима без электрической энергии. Выработка и использование электричества увеличивается с каждым годом, но перед человечеством уже маячит призрак грядущего энергетического голода из-за истощения месторождений гор ...

Разделы

Электромагнитный импульс как оружие

История вопроса и современное состояние знаний в области эми.

Лабораторные стенды в учебном процессе

Обзор и сравнительный анализ существующих стендов.

Аспекты технического знания

Технический объект и предмет технических наук.

Сварка металлов плавлением

Классификация электрической дуговой сварки.

Распределение примесей в кремнии

Описание процесса зонной плавки и ее математическая модель.



Наука сегодня и вчера - www.anytechnic.ru